北京市東城區(qū)示范校2024屆高三4月模擬考試(一模)數(shù)學試題_第1頁
北京市東城區(qū)示范校2024屆高三4月模擬考試(一模)數(shù)學試題_第2頁
北京市東城區(qū)示范校2024屆高三4月模擬考試(一模)數(shù)學試題_第3頁
北京市東城區(qū)示范校2024屆高三4月模擬考試(一模)數(shù)學試題_第4頁
北京市東城區(qū)示范校2024屆高三4月模擬考試(一模)數(shù)學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北京市東城區(qū)示范校2024屆高三4月模擬考試(一模)數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知四棱錐的底面為矩形,底面,點在線段上,以為直徑的圓過點.若,則的面積的最小值為()A.9 B.7 C. D.2.設雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.3.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.4.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.5.雙曲線x2a2A.y=±2x B.y=±3x6.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.7.設函數(shù),則函數(shù)的圖像可能為()A. B. C. D.8.已知雙曲線:,,為其左、右焦點,直線過右焦點,與雙曲線的右支交于,兩點,且點在軸上方,若,則直線的斜率為()A. B. C. D.9.已知函數(shù),若所有點,所構成的平面區(qū)域面積為,則()A. B. C.1 D.10.已知(為虛數(shù)單位,為的共軛復數(shù)),則復數(shù)在復平面內(nèi)對應的點在().A.第一象限 B.第二象限 C.第三象限 D.第四象限11.若實數(shù)、滿足,則的最小值是()A. B. C. D.12.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則______,______.14.已知角的終邊過點,則______.15.集合,,則_____.16.甲、乙兩人下棋,兩人下成和棋的概率是,乙獲勝的概率是,則乙不輸?shù)母怕适莀____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在區(qū)間上的最小值為,求m的值.18.(12分)選修4—5;不等式選講.已知函數(shù).(1)若的解集非空,求實數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,求證:.19.(12分)已知拋物線,過點的直線交拋物線于兩點,坐標原點為,.(1)求拋物線的方程;(2)當以為直徑的圓與軸相切時,求直線的方程.20.(12分)已知函數(shù)(1)求f(x)的單調(diào)遞增區(qū)間;(2)△ABC內(nèi)角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.21.(12分)已知數(shù)列和,前項和為,且,是各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.22.(10分)已知數(shù)列滿足,且,,成等比數(shù)列.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)記數(shù)列的前n項和為,,求數(shù)列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關系,再用表示出的面積,利用均值不等式即可容易求得.【題目詳解】設,,則.因為平面,平面,所以.又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因為,當且僅當,時等號成立,所以.故選:C.【題目點撥】本題考查空間幾何體的線面位置關系及基本不等式的應用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.2、A【解題分析】

由題意,根據(jù)雙曲線的對稱性知在軸上,設,則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.3、D【解題分析】

先求出球心到四個支點所在球的小圓的距離,再加上側(cè)面三角形的高,即可求解.【題目詳解】設四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質(zhì)可得,又由到底面的距離即為側(cè)面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【題目點撥】本題主要考查了空間幾何體的結(jié)構特征,以及球的性質(zhì)的綜合應用,著重考查了數(shù)形結(jié)合思想,以及推理與計算能力,屬于基礎題.4、B【解題分析】

求得直線的方程,畫出曲線表示的下半圓,結(jié)合圖象可得位于,結(jié)合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【題目詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.【題目點撥】本題考查三角形面積最值,解題關鍵是掌握直線與圓的位置關系,確定半圓上的點到直線距離的最小值,這由數(shù)形結(jié)合思想易得.5、A【解題分析】分析:根據(jù)離心率得a,c關系,進而得a,b關系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因為漸近線方程為y=±bax點睛:已知雙曲線方程x2a26、A【解題分析】

設,則MF的中點坐標為,代入雙曲線的方程可得的關系,再轉(zhuǎn)化成關于的齊次方程,求出的值,即可得答案.【題目詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設,∴MF的中點坐標為.代入方程可得,∴,∴,∴(負值舍去).故選:A.【題目點撥】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構造的齊次方程.7、B【解題分析】

根據(jù)函數(shù)為偶函數(shù)排除,再計算排除得到答案.【題目詳解】定義域為:,函數(shù)為偶函數(shù),排除,排除故選【題目點撥】本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項是常用的技巧.8、D【解題分析】

由|AF2|=3|BF2|,可得.設直線l的方程x=my+,m>0,設,,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【題目詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點,則F2(,0),設直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【題目點撥】本題考查直線與雙曲線的位置關系,考查韋達定理的運用,考查向量知識,屬于中檔題.9、D【解題分析】

依題意,可得,在上單調(diào)遞增,于是可得在上的值域為,繼而可得,解之即可.【題目詳解】解:,因為,,所以,在上單調(diào)遞增,則在上的值域為,因為所有點所構成的平面區(qū)域面積為,所以,解得,故選:D.【題目點撥】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,理解題意,得到是關鍵,考查運算能力,屬于中檔題.10、D【解題分析】

設,由,得,利用復數(shù)相等建立方程組即可.【題目詳解】設,則,所以,解得,故,復數(shù)在復平面內(nèi)對應的點為,在第四象限.故選:D.【題目點撥】本題考查復數(shù)的幾何意義,涉及到共軛復數(shù)的定義、復數(shù)的模等知識,考查學生的基本計算能力,是一道容易題.11、D【解題分析】

根據(jù)約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數(shù)得答案【題目詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點,由得,平移直線,當該直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【題目點撥】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎題.12、B【解題分析】

,將,代入化簡即可.【題目詳解】.故選:B.【題目點撥】本題考查平面向量基本定理的應用,涉及到向量的線性運算、數(shù)乘運算,考查學生的運算能力,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

利用兩角和的正切公式結(jié)合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式結(jié)合弦化切思想求出和的值,進而利用兩角差的余弦公式求出的值.【題目詳解】,,,.故答案為:;.【題目點撥】本題主要考查三角函數(shù)值的計算,考查兩角和的正切公式、兩角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的應用,難度不大.14、【解題分析】

由題意利用任意角的三角函數(shù)的定義,兩角和差正弦公式,求得的值.【題目詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【題目點撥】本題主要考查任意角的三角函數(shù)的定義,兩角和差正弦公式,屬于基礎題.15、【解題分析】

分析出集合A為奇數(shù)構成的集合,即可求得交集.【題目詳解】因為表示為奇數(shù),故.故答案為:【題目點撥】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡單題.16、【解題分析】乙不輸?shù)母怕蕿椋?三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解題分析】

(1)先求導,再對m分類討論,求出的單調(diào)性;(2)對m分三種情況討論求函數(shù)在區(qū)間上的最小值即得解.【題目詳解】(1)若,當時,;當時.,所以在上單調(diào)遞增,在上單調(diào)遞減若.在R上單調(diào)遞增若,當時,;當時.,所以在上單調(diào)遞增,在上單調(diào)遞減(2)由(1)可知,當時,在上單調(diào)遞增,則.則不合題意當時,在上單調(diào)遞減,在上單調(diào)遞增.則,即又因為單調(diào)遞增,且,故綜上,【題目點撥】本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性和最值,意在考查學生對這些知識的理解掌握水平.18、(1);(2)見解析.【解題分析】試題分析:(1)討論三種情況去絕對值符號,可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因為,要證,只需證,即證,只需證即可得結(jié)果.試題解析:(1)去絕對值符號,可得所以,所以,解得,所以實數(shù)的取值范圍為.(2)由(1)知,,所以.因為,所以要證,只需證,即證,即證.因為,所以只需證,因為,∴成立,所以解法二:x2+y2=2,x、y∈R+,x+y≥2xy設:證明:x+y-2xy==令,∴原式====當時,19、(1);(2)或【解題分析】試題分析:本題主要考查拋物線的標準方程、直線與拋物線的相交問題、直線與圓相切問題等基礎知識,同時考查考生的分析問題解決問題的能力、轉(zhuǎn)化能力、運算求解能力以及數(shù)形結(jié)合思想.第一問,設出直線方程與拋物線方程聯(lián)立,利用韋達定理得到y(tǒng)1+y2,y1y2,,代入到中解出P的值;第二問,結(jié)合第一問的過程,利用兩種方法求出的長,聯(lián)立解出m的值,從而得到直線的方程.試題解析:(Ⅰ)設l:x=my-2,代入y2=2px,得y2-2pmy+4p=1.(*)設A(x1,y1),B(x2,y2),則y1+y2=2pm,y1y2=4p,則.因為,所以x1x2+y1y2=12,即4+4p=12,得p=2,拋物線的方程為y2=4x.…5分(Ⅱ)由(Ⅰ)(*)化為y2-4my+2=1.y1+y2=4m,y1y2=2.…6分設AB的中點為M,則|AB|=2xm=x1+x2=m(y1+y2)-4=4m2-4,①又,②由①②得(1+m2)(16m2-32)=(4m2-4)2,解得m2=3,.所以,直線l的方程為,或.…12分考點:拋物線的標準方程、直線與拋物線的相交問題、直線與圓相切問題.20、(1)(2)【解題分析】

(1)利用降次公式、輔助角公式化簡解析式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)遞增區(qū)間.(2)先由求得,利用正弦定理得到,結(jié)合余弦定理列方程,求得,由此求得三角形的面積.【題目詳解】(1)函數(shù),,由,得.所以的單調(diào)遞增區(qū)間為.(2)因為且為銳角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【題目點撥】本小題主要考查三角恒等變換,考查三角函數(shù)單調(diào)區(qū)間的求法,考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.21、(1),;(2).【解題分析】

(1)令求出的值,然后由,得出,然后檢驗是否符合在時的表達式,即可得出數(shù)列的通項公式,并設數(shù)列的公比為,根據(jù)題意列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論