




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省瀘縣四中2024屆高三年級統(tǒng)考數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.要排出高三某班一天中,語文、數(shù)學(xué)、英語各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.2.為比較甲、乙兩名高二學(xué)生的數(shù)學(xué)素養(yǎng),對課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測驗(yàn)(指標(biāo)值滿分為5分,分值高者為優(yōu)),根據(jù)測驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述正確的是()A.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據(jù)分析最差3.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成進(jìn)行分析,隨機(jī)抽取了200分到450分之間的2000名學(xué)生的成績,并根據(jù)這2000名學(xué)生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內(nèi)的學(xué)生人數(shù)為()A.800 B.1000 C.1200 D.16004.已知函數(shù)是上的偶函數(shù),且當(dāng)時,函數(shù)是單調(diào)遞減函數(shù),則,,的大小關(guān)系是()A. B.C. D.5.已知復(fù)數(shù)滿足,且,則()A.3 B. C. D.6.函數(shù)的圖象大致是()A. B.C. D.7.已知是雙曲線的左、右焦點(diǎn),是的左、右頂點(diǎn),點(diǎn)在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.8.已知為定義在上的奇函數(shù),若當(dāng)時,(為實(shí)數(shù)),則關(guān)于的不等式的解集是()A. B. C. D.9.中,點(diǎn)在邊上,平分,若,,,,則()A. B. C. D.10.已知復(fù)數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于第三象限C.的共軛復(fù)數(shù) D.11.偶函數(shù)關(guān)于點(diǎn)對稱,當(dāng)時,,求()A. B. C. D.12.設(shè)集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則________.(填“>”或“=”或“<”).14.已知是拋物線的焦點(diǎn),是上一點(diǎn),的延長線交軸于點(diǎn).若為的中點(diǎn),則_________.15.設(shè)函數(shù),當(dāng)時,記最大值為,則的最小值為______.16.已知函數(shù)在點(diǎn)處的切線經(jīng)過原點(diǎn),函數(shù)的最小值為,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等比數(shù)列中,.(Ⅰ)求的通項(xiàng)公式;(Ⅱ)記為的前項(xiàng)和.若,求.18.(12分)已知函數(shù).(1)若是函數(shù)的極值點(diǎn),求的單調(diào)區(qū)間;(2)當(dāng)時,證明:19.(12分)已知直線與拋物線交于兩點(diǎn).(1)當(dāng)點(diǎn)的橫坐標(biāo)之和為4時,求直線的斜率;(2)已知點(diǎn),直線過點(diǎn),記直線的斜率分別為,當(dāng)取最大值時,求直線的方程.20.(12分)分別為的內(nèi)角的對邊.已知.(1)若,求;(2)已知,當(dāng)?shù)拿娣e取得最大值時,求的周長.21.(12分)為提供市民的健身素質(zhì),某市把四個籃球館全部轉(zhuǎn)為免費(fèi)民用(1)在一次全民健身活動中,四個籃球館的使用場數(shù)如圖,用分層抽樣的方法從四場館的使用場數(shù)中依次抽取共25場,在中隨機(jī)取兩數(shù),求這兩數(shù)和的分布列和數(shù)學(xué)期望;(2)設(shè)四個籃球館一個月內(nèi)各館使用次數(shù)之和為,其相應(yīng)維修費(fèi)用為元,根據(jù)統(tǒng)計(jì),得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據(jù)①的結(jié)論,試估計(jì)這四個籃球館月惠值最大時的值參考數(shù)據(jù)和公式:,22.(10分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】
根據(jù)題意,分兩種情況進(jìn)行討論:①語文和數(shù)學(xué)都安排在上午;②語文和數(shù)學(xué)一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計(jì)數(shù)原理可得答案.【題目詳解】根據(jù)題意,分兩種情況進(jìn)行討論:①語文和數(shù)學(xué)都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學(xué)課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時,排法種數(shù)為種;②語文和數(shù)學(xué)都一個安排在上午,一個安排在下午.語文和數(shù)學(xué)一個安排在上午,一個安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學(xué)課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時,排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【題目點(diǎn)撥】本題考查排列、組合的應(yīng)用,涉及分類計(jì)數(shù)原理的應(yīng)用,屬于中等題.2、C【解題分析】
根據(jù)題目所給圖像,填寫好表格,由表格數(shù)據(jù)選出正確選項(xiàng).【題目詳解】根據(jù)雷達(dá)圖得到如下數(shù)據(jù):數(shù)學(xué)抽象邏輯推理數(shù)學(xué)建模直觀想象數(shù)學(xué)運(yùn)算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.【題目點(diǎn)撥】本題考查統(tǒng)計(jì)問題,考查數(shù)據(jù)處理能力和應(yīng)用意識.3、B【解題分析】
由圖可列方程算得a,然后求出成績在內(nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績在內(nèi)的學(xué)生人數(shù).【題目詳解】由頻率和為1,得,解得,所以成績在內(nèi)的頻率,所以成績在內(nèi)的學(xué)生人數(shù).故選:B【題目點(diǎn)撥】本題主要考查頻率直方圖的應(yīng)用,屬基礎(chǔ)題.4、D【解題分析】
利用對數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項(xiàng).【題目詳解】因?yàn)椋?,?又,故.因?yàn)楫?dāng)時,函數(shù)是單調(diào)遞減函數(shù),所以.因?yàn)闉榕己瘮?shù),故,所以.故選:D.【題目點(diǎn)撥】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對數(shù)函數(shù)的單調(diào)性在大小比較中的應(yīng)用,比較大小時注意選擇合適的中間數(shù)來傳遞不等關(guān)系,本題屬于中檔題.5、C【解題分析】
設(shè),則,利用和求得,即可.【題目詳解】設(shè),則,因?yàn)?則,所以,又,即,所以,所以,故選:C【題目點(diǎn)撥】本題考查復(fù)數(shù)的乘法法則的應(yīng)用,考查共軛復(fù)數(shù)的應(yīng)用.6、B【解題分析】
根據(jù)函數(shù)表達(dá)式,把分母設(shè)為新函數(shù),首先計(jì)算函數(shù)定義域,然后求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)判斷函數(shù)單調(diào)性,對應(yīng)函數(shù)圖像得到答案.【題目詳解】設(shè),,則的定義域?yàn)?,當(dāng),,單增,當(dāng),,單減,則.則在上單增,上單減,.選B.【題目點(diǎn)撥】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運(yùn)算,同學(xué)們還可以用特殊值法等方法進(jìn)行判斷.7、D【解題分析】
根據(jù)為等腰三角形,可求出點(diǎn)P的坐標(biāo),又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【題目詳解】如圖,因?yàn)闉榈妊切危?,所以?,又,,解得,所以雙曲線的漸近線方程為,故選:D【題目點(diǎn)撥】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.8、A【解題分析】
先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【題目詳解】據(jù)題意,得,得,所以當(dāng)時,.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【題目點(diǎn)撥】本題主要考查函數(shù)的性質(zhì)應(yīng)用,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).9、B【解題分析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運(yùn)算即得答案.【題目詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【題目點(diǎn)撥】本題主要考查平面向量的線性運(yùn)算,屬于基礎(chǔ)題.10、D【解題分析】
利用的周期性先將復(fù)數(shù)化簡為即可得到答案.【題目詳解】因?yàn)?,,,所以的周期?,故,故的虛部為2,A錯誤;在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,在第二象限,B錯誤;的共軛復(fù)數(shù)為,C錯誤;,D正確.故選:D.【題目點(diǎn)撥】本題考查復(fù)數(shù)的四則運(yùn)算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識,是一道基礎(chǔ)題.11、D【解題分析】
推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計(jì)算即可.【題目詳解】由于偶函數(shù)的圖象關(guān)于點(diǎn)對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時,,則.故選:D.【題目點(diǎn)撥】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.12、A【解題分析】
解出集合,利用交集的定義可求得集合.【題目詳解】因?yàn)?,又,所?故選:A.【題目點(diǎn)撥】本題考查交集的計(jì)算,同時也考查了一元二次不等式的求解,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
注意到,故只需比較與1的大小即可.【題目詳解】由已知,,故有.又由,故有.故答案為:.【題目點(diǎn)撥】本題考查對數(shù)式比較大小,涉及到換底公式的應(yīng)用,考查學(xué)生的數(shù)學(xué)運(yùn)算能力,是一道中檔題.14、【解題分析】
由題意可得,又由于為的中點(diǎn),且點(diǎn)在軸上,所以可得點(diǎn)的橫坐標(biāo),代入拋物線方程中可求點(diǎn)的縱坐標(biāo),從而可求出點(diǎn)的坐標(biāo),再利用兩點(diǎn)間的距離公式可求得結(jié)果.【題目詳解】解:因?yàn)槭菕佄锞€的焦點(diǎn),所以,設(shè)點(diǎn)的坐標(biāo)為,因?yàn)闉榈闹悬c(diǎn),而點(diǎn)的橫坐標(biāo)為0,所以,所以,解得,所以點(diǎn)的坐標(biāo)為所以,故答案為:【題目點(diǎn)撥】此題考查拋物線的性質(zhì),中點(diǎn)坐標(biāo)公式,屬于基礎(chǔ)題.15、【解題分析】
易知,設(shè),,利用絕對值不等式的性質(zhì)即可得解.【題目詳解】,設(shè),,令,當(dāng)時,,所以單調(diào)遞減令,當(dāng)時,,所以單調(diào)遞增所以當(dāng)時,,,則則,即故答案為:.【題目點(diǎn)撥】本題考查函數(shù)最值的求法,考查絕對值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題.16、0【解題分析】
求出,求出切線點(diǎn)斜式方程,原點(diǎn)坐標(biāo)代入,求出的值,求,求出單調(diào)區(qū)間,進(jìn)而求出極小值最小值,即可求解.【題目詳解】,,,切線的方程:,又過原點(diǎn),所以,,,.當(dāng)時,;當(dāng)時,.故函數(shù)的最小值,所以.故答案為:0.【題目點(diǎn)撥】本題考查導(dǎo)數(shù)的應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義、極值最值,屬于中檔題..三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)或(Ⅱ)12【解題分析】
(1)先設(shè)數(shù)列的公比為,根據(jù)題中條件求出公比,即可得出通項(xiàng)公式;(2)根據(jù)(1)的結(jié)果,由等比數(shù)列的求和公式,即可求出結(jié)果.【題目詳解】(1)設(shè)數(shù)列的公比為,,,或.(2)時,,解得;時,,無正整數(shù)解;綜上所述.【題目點(diǎn)撥】本題主要考查等比數(shù)列,熟記等比數(shù)列的通項(xiàng)公式與求和公式即可,屬于基礎(chǔ)題型.18、(1)遞減區(qū)間為(-1,0),遞增區(qū)間為(2)見解析【解題分析】
(1)根據(jù)函數(shù)解析式,先求得導(dǎo)函數(shù),由是函數(shù)的極值點(diǎn)可求得參數(shù).求得函數(shù)定義域,并根據(jù)導(dǎo)函數(shù)的符號即可判斷單調(diào)區(qū)間.(2)當(dāng)時,.代入函數(shù)解析式放縮為,代入證明的不等式可化為,構(gòu)造函數(shù),并求得,由函數(shù)單調(diào)性及零點(diǎn)存在定理可知存在唯一的,使得成立,因而求得函數(shù)的最小值,由對數(shù)式變形化簡可證明,即成立,原不等式得證.【題目詳解】(1)函數(shù)可求得,則解得所以,定義域?yàn)?,在單調(diào)遞增,而,∴當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,此時是函數(shù)的極小值點(diǎn),的遞減區(qū)間為,遞增區(qū)間為(2)證明:當(dāng)時,,因此要證當(dāng)時,,只需證明,即令,則,在是單調(diào)遞增,而,∴存在唯一的,使得,當(dāng),單調(diào)遞減,當(dāng),單調(diào)遞增,因此當(dāng)時,函數(shù)取得最小值,,,故,從而,即,結(jié)論成立.【題目點(diǎn)撥】本題考查了由函數(shù)極值求參數(shù),并根據(jù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)區(qū)間,利用導(dǎo)數(shù)證明不等式恒成立,構(gòu)造函數(shù)法的綜合應(yīng)用,屬于難題.19、(1)(2)【解題分析】
(1)設(shè),根據(jù)直線的斜率公式即可求解;(2)設(shè)直線的方程為,聯(lián)立直線與拋物線方程,由韋達(dá)定理得,,結(jié)合直線的斜率公式得到,換元后討論的符號,求最值可求解.【題目詳解】(1)設(shè),因?yàn)?,即直線的斜率為1.(2)顯然直線的斜率存在,設(shè)直線的方程為.聯(lián)立方程組,可得則,令,則則當(dāng)時,;當(dāng)且僅當(dāng),即時,解得時,取“=”號,當(dāng)時,;當(dāng)時,綜上所述,當(dāng)時,取得最大值,此時直線的方程是.【題目點(diǎn)撥】本題主要考查了直線的斜率公式,直線與拋物線的位置關(guān)系,換元法,均值不等式,考查了運(yùn)算能力,屬于難題.20、(1)(2)【解題分析】
(1)根據(jù)正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據(jù),選擇,所以當(dāng)?shù)拿娣e取得最大值時,最大,結(jié)合(1)中條件,即可求出最大時,對應(yīng)的的值,再根據(jù)余弦定理求出邊,進(jìn)而得到的周長.【題目詳解】(1)由,得,即.因?yàn)椋?由,得.(2)因?yàn)?,所以,?dāng)且僅當(dāng)時,等號成立.因?yàn)榈拿娣e.所以當(dāng)時,的面積取得最大值,此時,則,所以的周長為.【題目點(diǎn)撥】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力.21、(1)見解析,12.5(2)①②20【解題分析】
(1)運(yùn)用分層抽樣,結(jié)合總場次為100,可求得的值,再運(yùn)用古典概型的概率計(jì)算公式可求解果;(2)①由公式可計(jì)算的值,進(jìn)而可求與的回歸直線方程;②求出,再對函數(shù)求導(dǎo),結(jié)合單調(diào)性,可估計(jì)這四個籃球館月惠值最大時的值.【題目詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數(shù)之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因?yàn)樗?,,;②,設(shè),所以當(dāng)遞增,當(dāng)遞減所以約惠值最大值時的值為20【題目點(diǎn)撥】本題考查直方圖的實(shí)際應(yīng)用,涉及求概率,平均數(shù)、擬合直線和導(dǎo)數(shù)等問題,關(guān)鍵是要讀懂題意,屬于中檔題.22、(Ⅰ)詳見解析;(Ⅱ).【解題分析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2019-2025年國家電網(wǎng)招聘之法學(xué)類考前沖刺試卷B卷含答案
- 2019-2025年公務(wù)員省考之行測每日一練試卷A卷含答案
- 公共關(guān)系專業(yè)發(fā)展的試題及答案解析
- 工程經(jīng)濟(jì)穩(wěn)定性分析試題及答案
- 投資決策中的商業(yè)倫理與經(jīng)濟(jì)分析試題及答案
- 21世紀(jì)水利水電工程考試試題及答案
- 2025年部門級安全培訓(xùn)考試試題及參考答案(基礎(chǔ)題)
- 公共關(guān)系在文化交流中的重要意義試題及答案
- 2025-2030年鋅球行業(yè)市場深度分析及前景趨勢與投資研究報告
- 2025-2030年蓄電池旅游車行業(yè)市場深度調(diào)研及前景趨勢與投資研究報告
- 熱線心理咨詢技術(shù)-課件
- 碰撞與沖擊動力學(xué)
- 全等三角形第一課時課件
- 溫嶺市國企招聘考試真題及答案
- 歌曲《我們》歌詞
- GB/T 3301-2023日用陶瓷器規(guī)格誤差和缺陷尺寸的測定方法
- 頸部腫塊診斷及鑒別診斷課件
- 物理人教版(2019)必修第三冊閉合電路的歐姆定律
- 汽車前保險杠結(jié)構(gòu)及安全能分析學(xué)士學(xué)位參考
- 配電室八項(xiàng)制度(八張)
- 2023年山東省青島市中考數(shù)學(xué)試卷
評論
0/150
提交評論