




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
例1
一質(zhì)點(diǎn)在平面上運(yùn)動(dòng),運(yùn)動(dòng)方程為x=3t+5,y=t2/2+3t-4.式中t以s計(jì),x,y以m計(jì).(1)以時(shí)間為變量,寫出質(zhì)點(diǎn)位置矢量的表示式;(2)求出=1s時(shí)刻和=2s時(shí)刻的位置矢量,計(jì)算這1秒內(nèi)質(zhì)點(diǎn)的位移;(3)計(jì)算t=0s時(shí)刻到t=4s時(shí)刻內(nèi)的平均速度;(4)求出質(zhì)點(diǎn)速度矢量表示式,計(jì)算t=4s時(shí)質(zhì)點(diǎn)的速度;(5)計(jì)算t=0s到t=4s內(nèi)質(zhì)點(diǎn)的平均加速度;(6)求出質(zhì)點(diǎn)加速度矢量的表示式,計(jì)算t=4s時(shí)質(zhì)點(diǎn)的加速度(請(qǐng)把位置矢量、位移、平均速度、瞬時(shí)速度、平均加速度、瞬時(shí)加速度都表示成直角坐標(biāo)系中的矢量式).第一章力學(xué)基本定律解:(1)(2)將t=1s,t=2s,代入上式即有(3)(4)(5)(6)求:船的速率解:hs例2lhsl例3作用在質(zhì)點(diǎn)上的力為在下列情況下求質(zhì)點(diǎn)從處運(yùn)動(dòng)到處該力作的功:1.質(zhì)點(diǎn)的運(yùn)動(dòng)軌道為拋物線2.質(zhì)點(diǎn)的運(yùn)動(dòng)軌道為直線XYO做功與路徑有關(guān)XYO例一、如圖,車在光滑水平面上運(yùn)動(dòng)。已知m、M、人逆車運(yùn)動(dòng)方向從車頭經(jīng)t到達(dá)車尾。求:1、若人勻速運(yùn)動(dòng),他到達(dá)車尾時(shí)車的速度;
2、車的運(yùn)動(dòng)路程;
3、若人以變速率運(yùn)動(dòng),上述結(jié)論如何?解:以人和車為研究系統(tǒng),取地面為參照系。水平方向系統(tǒng)動(dòng)量守恒。1、2、3、例1、求質(zhì)量為m、半徑為R的均勻圓環(huán)的轉(zhuǎn)動(dòng)慣量。軸與圓環(huán)平面垂直并通過(guò)圓心。解:細(xì)圓環(huán)R又解:J是可加的,所以若為薄圓筒(不計(jì)厚度)結(jié)果相同。例2
求質(zhì)量為m、半徑為R、厚為l
的均勻圓盤的轉(zhuǎn)動(dòng)慣量。軸與盤平面垂直并通過(guò)盤心。解:取半徑為r寬為dr的薄圓環(huán),可見(jiàn),轉(zhuǎn)動(dòng)慣量與l無(wú)關(guān)。所以,實(shí)心圓柱對(duì)其軸的轉(zhuǎn)動(dòng)慣量也是mR2/2。例3、求長(zhǎng)為L(zhǎng)、質(zhì)量為m的均勻細(xì)棒對(duì)圖中不同軸的轉(zhuǎn)動(dòng)慣量。ABLXABL/2L/2CX解:取如圖坐標(biāo)dm=
dx轉(zhuǎn)動(dòng)定律應(yīng)用舉例例4
一個(gè)質(zhì)量為M、半徑為R的定滑輪(當(dāng)作均勻圓盤)上面繞有細(xì)繩,繩的一端固定在滑輪邊上,另一端掛一質(zhì)量為m的物體而下垂。忽略軸處摩擦,求物體m由靜止下落高度h時(shí)的速度和此時(shí)滑輪的角速度。mgmg解:例5、一個(gè)飛輪的質(zhì)量為69kg,半徑為0.25m,正在以每分1000轉(zhuǎn)的轉(zhuǎn)速轉(zhuǎn)動(dòng)?,F(xiàn)在要制動(dòng)飛輪,要求在5.0秒內(nèi)使它均勻減速而最后停下來(lái)。摩擦系數(shù)為0.2。求閘瓦對(duì)輪子的壓力N為多大?F
0解:飛輪制動(dòng)時(shí)有角加速度外力矩是摩擦阻力矩,角加速度為負(fù)值。
0Nfr例6、一根長(zhǎng)為l、質(zhì)量為m的均勻細(xì)直棒,其一端有一固定的光滑水平軸,因而可以在豎直平面內(nèi)轉(zhuǎn)動(dòng)。最初棒靜止在水平位置,求它由此下擺
角時(shí)的角加速度和角速度。解:棒下擺為加速過(guò)程,外力矩為重力對(duì)O的力矩。棒上取質(zhì)元dm,當(dāng)棒處在下擺
角時(shí),該質(zhì)量元的重力對(duì)軸的元力矩為
Ogdmdm重力對(duì)整個(gè)棒的合力矩為
Ogdmdm代入轉(zhuǎn)動(dòng)定律,可得例7)質(zhì)量為M、半徑為R的轉(zhuǎn)臺(tái),可繞通過(guò)中心的豎直軸轉(zhuǎn)動(dòng)。質(zhì)量為m的人站在邊沿上,人和轉(zhuǎn)臺(tái)原來(lái)都靜止。如果人沿臺(tái)邊緣奔跑一周,求對(duì)地而言,人和轉(zhuǎn)臺(tái)各轉(zhuǎn)動(dòng)了多少角度?已知:求:解:以M、m為研究對(duì)象故角動(dòng)量守恒+MXm因人和臺(tái)原來(lái)都靜止故角動(dòng)量(2)式×dt積分:若人和轉(zhuǎn)臺(tái)的角速度分別為+MXmMXmAAm已知:例題8)一木桿長(zhǎng)L可繞光滑端軸O旋轉(zhuǎn)。設(shè)這時(shí)有一質(zhì)量為m的子彈以水平速度射入桿端并嵌入桿內(nèi),求桿偏轉(zhuǎn)的角度。射入前后(即子彈與木桿的碰撞)過(guò)程,以子彈和木桿組成的系統(tǒng)角動(dòng)量守恒!而系統(tǒng)的動(dòng)量不守恒。為什么?MM+m提請(qǐng)同學(xué)們特別注意:以后凡遇到質(zhì)點(diǎn)與剛體的碰撞之類的問(wèn)題,均要應(yīng)用角動(dòng)量守恒求解,而一般不能應(yīng)用動(dòng)量守恒求解。系統(tǒng)在子彈射入之后的角動(dòng)量:系統(tǒng)在子彈射入之前的角動(dòng)量:依角動(dòng)量守恒定理:子彈射入之前MM+OO解:此題可分為兩個(gè)過(guò)程,(1)碰撞過(guò)程;(2)上擺過(guò)程。碰撞過(guò)程以子彈和木桿組成的系統(tǒng)的角動(dòng)量守恒。上擺過(guò)程以子彈、木桿和地球組成的系統(tǒng)機(jī)械能守恒。碰撞過(guò)程(2)上擺過(guò)程:以M、m、地球?yàn)檠芯繉?duì)象,以桿端為勢(shì)能零點(diǎn)初態(tài)的機(jī)械能末態(tài)的機(jī)械能依機(jī)械能守恒:(1)式代入(3)式子彈射入之后NOmgMM+O[例9]如圖示已知:M=2m,h,q=60°求:碰撞后瞬間盤的w0=?
P轉(zhuǎn)到x軸時(shí)盤的w=?a=?解:m下落:mghmv=122vghT=2(1)碰撞
t
極小,對(duì)m+盤系統(tǒng),沖力遠(yuǎn)大于重力,故重力對(duì)O力矩可忽略,角動(dòng)量守恒:mvRJocosqw=(2)JMRmRmR=+=122222
(3)由(1)(2)(3)得:wqoghR=22cos
(4)對(duì)m+M+地球系統(tǒng),只有重力做功,E守恒,則:P、x重合時(shí)EP=0。令1mgRJJosinqww+=12222(5)由(3)(4)(5)得:wqq=+ghRgR222cossin=+12243RghR.()()q=60oa===MJmgRmRgR222例2-1
設(shè)有流量為0.12m3s-1
的水流過(guò)一管子,A點(diǎn)的壓強(qiáng)為2×105Pa,A點(diǎn)的截面積為100cm2,B點(diǎn)的截面積為60cm2,B點(diǎn)比A點(diǎn)高2m。假設(shè)水的內(nèi)摩察力可以忽略不計(jì),求A、B點(diǎn)的流速和B點(diǎn)壓強(qiáng)。解:根據(jù)連續(xù)性方程有第2章流體的運(yùn)動(dòng)又根據(jù)伯努力方程有例2-2
一開(kāi)口水槽中的水深為H,如圖例2-2所示。在水面下h深處開(kāi)一小孔。問(wèn):(1)射出的水流在地板上的射程S是多大?(2)在水槽的其他深度處,能否再開(kāi)一小孔,其射出的水流有相同的射程?(3)小孔開(kāi)在水面下的深度h多大時(shí),射程最遠(yuǎn)?射程多長(zhǎng)?圖例2-2解:(1)P1=P2=P0,h1=H,h2=H-h
解得:從小孔射出來(lái)的水流作平拋運(yùn)動(dòng),射到地面時(shí)間為其射程為
(2)假設(shè)在另一個(gè)開(kāi)一小孔,其離液面高度為h',按上述計(jì)算方法可求得其射程為若有相同射程,即有s=s'解得h'=H-h(3)要使s最大,只要求s的極大值即可
最大射程為H
求得3、雷諾數(shù)雷諾數(shù)Re
(1)Re<1000時(shí),流體作層流(2)Re>1500時(shí),流體作湍流(3)1000<Re<1500時(shí),流體流動(dòng)不穩(wěn)定例2-3
主動(dòng)脈的內(nèi)半徑為0.01m,血液的流速、粘度、密度分別為0.25m/s、0.003Pa.s、1050kg/m3
,求雷諾數(shù)并判斷血液以何種形態(tài)流動(dòng)。(Re=875)結(jié)論:液體的粘度愈小、密度愈大,愈容易發(fā)生湍流,細(xì)管不容易發(fā)生湍流;而彎曲的管子容易發(fā)生湍流。說(shuō)明:例2-4
成年人主動(dòng)脈的半徑為。問(wèn)在一段距離內(nèi)的流阻和壓強(qiáng)降落是多少?設(shè)血流量為,解:可見(jiàn)與平均動(dòng)脈壓13.3kPa相比,主動(dòng)脈的血壓降落是微不足道的例5
水由蓄水池中穩(wěn)定流出,如圖所示。A點(diǎn)高度為10m,B點(diǎn)和C點(diǎn)的高度為1m,在B點(diǎn)處管的截面積為0.04m2,在C點(diǎn)處為0.02m2,蓄水池的面積比管的截面積大得多。求:(1)B點(diǎn)處的計(jì)示壓強(qiáng);(2)單位時(shí)間內(nèi)的流量。ABC解:PA=PC=P0
例1:
一質(zhì)點(diǎn)沿x
軸作簡(jiǎn)諧振動(dòng),振幅A=0.12m,周期T=2s,當(dāng)t=0時(shí),質(zhì)點(diǎn)對(duì)平衡位置的位移x0
=0.06m,
此時(shí)刻質(zhì)點(diǎn)向x
正向運(yùn)動(dòng)。求此簡(jiǎn)諧振動(dòng)的表達(dá)式。解取平衡位置為坐標(biāo)原點(diǎn)。由題設(shè)T=2s,則A=0.12m由初條件x0
=0.06m,v00得簡(jiǎn)諧振動(dòng)的表達(dá)式為設(shè)簡(jiǎn)諧振動(dòng)的表達(dá)式為第3章振動(dòng)、波動(dòng)和聲例2
已知某簡(jiǎn)諧振動(dòng)的速度與時(shí)間的關(guān)系曲線如圖所示,試求其振動(dòng)方程。解:方法1設(shè)振動(dòng)方程為故振動(dòng)方程為方法2:用旋轉(zhuǎn)矢量法輔助求解。v的旋轉(zhuǎn)矢量與v軸夾角表示t時(shí)刻相位由圖知解:原點(diǎn)的振動(dòng)方程波動(dòng)方程:原點(diǎn)的振動(dòng)方程波動(dòng)方程:例3:如圖有一平面簡(jiǎn)諧波在空間傳播,已知P點(diǎn)的振動(dòng)方程為(1)分別就圖中的兩種坐標(biāo)寫出其波動(dòng)方程(2)寫出距P點(diǎn)為b的Q點(diǎn)的振動(dòng)方程OPQXYuPQXOYuOPQXYuPQXOYu(2)寫出距P點(diǎn)為b的Q點(diǎn)的振動(dòng)方程將將例4.一平面簡(jiǎn)諧波沿x正方向傳播,振幅A=10cm,圓頻率當(dāng)t=1.0s時(shí),位于x=10cm處的質(zhì)點(diǎn)a經(jīng)過(guò)平衡位置向y軸負(fù)方向運(yùn)動(dòng)。此時(shí),位于x=20cm處的質(zhì)點(diǎn)b的位移為5cm,且向y軸正方向運(yùn)動(dòng)。設(shè)該波波長(zhǎng),試求該波的波動(dòng)方程。解:設(shè)該波的波動(dòng)方程為:求解的關(guān)鍵是求出波速u及原點(diǎn)的初位相由題意知t=1.0s時(shí)a點(diǎn)(x=10cm)運(yùn)動(dòng)狀態(tài):所以XOabu取故得波動(dòng)方程為時(shí),b點(diǎn)的位相只能?。ㄟ€考慮了以及的條件。)注意b點(diǎn)落后于a點(diǎn),故同一時(shí)刻(t=1.0s)a點(diǎn)的位相取同理XOabu例5
位于A、B兩點(diǎn)的兩個(gè)波源,振幅相等,頻率都是100赫茲,相位差為
,其A、B相距30米,波速為400米/秒,求:A、B連線之間因相干干涉而靜止的各點(diǎn)的位置。解:如圖所示,取A點(diǎn)為坐標(biāo)原點(diǎn),A、B聯(lián)線為X軸,取A點(diǎn)的振動(dòng)方程:在X軸上A點(diǎn)發(fā)出的行波方程:B點(diǎn)的振動(dòng)方程:B點(diǎn)的振動(dòng)方程:在X軸上B點(diǎn)發(fā)出的行波方程:因?yàn)閮刹ㄍl率,同振幅,同方向振動(dòng),所以相干為靜止的點(diǎn)滿足:相干相消的點(diǎn)需滿足:因?yàn)椋豪?:1000hz的痛域強(qiáng)度I=1W/m2在聽(tīng)覺(jué)區(qū)域中,聲強(qiáng)差別很大,但人耳主觀感覺(jué)差別并沒(méi)有這樣大。因此用聲強(qiáng)級(jí)來(lái)表示聲音強(qiáng)度的等級(jí)。4.聲強(qiáng)級(jí):例7:已知兩聲強(qiáng)級(jí)之差為20dB,求兩聲強(qiáng)之比。例1:已知雙縫間距d=0.60mm,縫和屏幕間距D=1.50m,若測(cè)得相鄰兩明條紋間距△x=1.50mm。(1)求入射光的波長(zhǎng)?(2)若以折射率n=1.30,厚度L=0.01mm的透明薄膜遮住一縫,原來(lái)的中央明條紋將變成第幾級(jí)明條紋?解:(1)例2:見(jiàn)書第4章波動(dòng)光學(xué)未遮薄膜時(shí),中央明條紋光程差為:遮上薄膜后光程差為:設(shè)此處為k級(jí)明紋,則:例2:見(jiàn)書例3
用紫光垂直照射牛頓環(huán),測(cè)得第k
級(jí)暗環(huán)的半徑,k
級(jí)往上數(shù)第16個(gè)暗環(huán)半徑,平凸透鏡的曲率半徑R=2.50m求:紫光的波長(zhǎng)?解:根據(jù)暗環(huán)半徑公式:解:因?yàn)?,所以反射光?jīng)歷兩次半波損失。反射光相干相消的條件是:?jiǎn)枺喝舴瓷涔庀嘞缮娴臈l件中取
k=1,膜的厚度為多少?此增透膜在可見(jiàn)光范圍內(nèi)有沒(méi)有增反?例4
照相機(jī)鏡頭n3=1.5,其上涂一層n2=1.38的氟化鎂增透膜,用波長(zhǎng)的光線垂直照射。此膜對(duì)反射光干涉相長(zhǎng)條件:可見(jiàn)光波長(zhǎng)范圍400~700nm波長(zhǎng)412.5nm的可見(jiàn)光有增反。例5:若反射光相消干涉的條件中取
k=1,膜的厚度為多少?此增透膜在可見(jiàn)光范圍內(nèi)有沒(méi)有增反?例6
在邁克耳遜干涉儀的兩臂中分別引入10厘米長(zhǎng)的玻璃管A、B
,其中一個(gè)抽成真空,另一個(gè)在充以一個(gè)大氣壓空氣的過(guò)程中觀察到107.2
條條紋移動(dòng),所用波長(zhǎng)為546nm。求空氣的折射率?解:設(shè)空氣的折射率為n條紋移動(dòng)一條時(shí),對(duì)應(yīng)光程差的變化為一個(gè)波長(zhǎng),當(dāng)觀察到107.2條移過(guò)時(shí),光程差的改變量滿足:邁克耳遜干涉儀的兩臂中便于插放待測(cè)樣品,由條紋的變化測(cè)量有關(guān)參數(shù)。精度高例7
一束波長(zhǎng)為
=500nm的平行光垂直照射在一個(gè)單縫上。
如果所用的單縫的寬度a=0.5mm,縫后緊挨著的薄透鏡焦距f=1m,求:(1)第一級(jí)暗紋離中央明紋中心的距離;(2)中央明條紋的半角寬度;(3)中央亮紋的線寬度;(4)如果在屏幕上離中央明紋中心為x=3.5mm的P處為一明紋,則它為第幾級(jí)明紋?從P處看,對(duì)該光波而言,狹縫處的波陣面可分割成幾個(gè)半波帶?解:(2)中央亮紋半角寬度(3)中央亮紋線寬度(1)第一級(jí)暗紋離中央明紋中心的距離(4)已知x=3.5mm是明紋當(dāng)k=3時(shí),光程差狹縫處波陣面可分成7個(gè)半波帶。例8
用每厘米有5000條縫的光柵,觀察鈉光譜線,λ=589.3nm。在下列情況下,最多能看到幾級(jí)條紋?(光線垂直入射時(shí))最多能看到3級(jí)條紋。解:由光柵方程:例波長(zhǎng)為600nm的單色光垂直入射在一光柵上,第二級(jí)明紋出現(xiàn)在sinθ2=0.2處,第4級(jí)缺級(jí)。求:(1)光柵常數(shù)是多少?(2)狹縫的最小寬度是多少?(3)按上述選定的a、d值,實(shí)際上能觀察到的全部明紋數(shù)是多少?解:(1)(2)在-900<sinθ<900范圍內(nèi)可觀察到的明紋級(jí)數(shù)為k=0,1,2,3,5,6,7,9,共15條明紋(3)實(shí)際上能觀察到的全部明紋數(shù)是多少?例9:用兩偏振片平行放置作為起偏器和檢偏器。當(dāng)它們的偏振化方向之間的夾角為30°時(shí),一束單色自然光穿過(guò)它們,出射光強(qiáng)為I1',當(dāng)它們的偏振化方向之間的夾角為60°時(shí),另一束單色自然光穿過(guò)它們,出射光強(qiáng)為I2',且I1'=I2'。求兩束單色自然光的強(qiáng)度之比。解:令I(lǐng)1和I2分別為兩光源照到起偏器上的光強(qiáng)。透過(guò)起偏器后,光的強(qiáng)度分別為I1/2和I2/2。按馬呂斯定律,透過(guò)檢偏器的光強(qiáng)分別是按題意I1'=I2',所以有由此得n例題1:圓柱形玻璃棒(n=1.5)的一端為半徑2cm的凸球面。(1)當(dāng)球棒置于空氣中時(shí),在棒的軸線上距離棒端8cm處的物點(diǎn)所成的像的位置。(2)若將此棒置于水中(n=1.33),物距不變,像距應(yīng)是多少?(設(shè)棒足夠長(zhǎng))解:(1)將n1=1.0,n2=1.5,r=2cm,u=8cm代入得(2)將n1=1.33,n2=1.5,r=2cm,u=8cm代入得實(shí)像虛像第5章幾何光學(xué)例題2
從幾何光學(xué)的角度來(lái)看,人眼可以簡(jiǎn)化為高爾斯特蘭簡(jiǎn)化模型。這種模型將人眼成像歸結(jié)為一個(gè)曲率半徑為5.7mm、媒質(zhì)折射率為1.333的單球面折射成像。(1)試求這種簡(jiǎn)化眼的焦點(diǎn)位置和焦度;(2)若已知某物在膜后24.02mm處視網(wǎng)膜上成像,求該物應(yīng)放何處。解:(1)已知n1=1.0,n2=1.333,r=5.7mm于是有解:(2)已知v=24.02,應(yīng)用高斯公式得解:對(duì)第一折射面n1=1.0,n2=1.5,r=10cm,u1=40cm例題3
玻璃球(n=1.5)半徑為10cm,置于空氣(n=1.0)中,一點(diǎn)光源放在球前40cm處。求近軸光線通過(guò)玻璃球后所成的像。對(duì)第二折射面n1=1.5,n2=1.0,r=-10cm例4透鏡組設(shè)兩個(gè)透鏡的焦距分別為f1,f2,透鏡組的物距為u,相距為v。對(duì)第一個(gè)透鏡:對(duì)第二個(gè)透鏡:對(duì)第一個(gè)透鏡:對(duì)第二個(gè)透鏡:兩式相加:即:緊密接觸的透鏡組的等效焦距的倒數(shù)等于組成它的各透鏡的焦距的倒數(shù)之和。例題5
一近視眼的遠(yuǎn)點(diǎn)在眼前50cm處,今欲使其看清無(wú)限遠(yuǎn)處的物體,則應(yīng)配戴多少度的眼鏡?解:例題6
一遠(yuǎn)視眼的近點(diǎn)在眼前1.2m處,今欲使其看清眼前12cm處的物體,則應(yīng)配戴怎樣的眼鏡?解:一簡(jiǎn)約眼具有下圖所示參數(shù),試問(wèn):(1)平行于光軸的光線會(huì)聚在何處?(2)若要使無(wú)窮遠(yuǎn)處光線會(huì)聚在視網(wǎng)膜上,應(yīng)配戴多少度的眼鏡?
n=1.33
4.7mm
20mm解:例1:氧氣瓶的壓強(qiáng)降到106Pa即應(yīng)重新充氣,以免混入其他氣體而需洗瓶。今有一瓶氧氣,容積為32L,壓強(qiáng)為1.3107Pa,若每天用105Pa的氧氣400L,問(wèn)此瓶氧氣可供多少天使用?設(shè)使用時(shí)溫度不變。解:根據(jù)題意,可確定研究對(duì)象為原來(lái)氣體、用去氣體和剩余氣體,設(shè)這三部分氣體的狀態(tài)參量分別為使用時(shí)的溫度為T設(shè)可供x天使用原有每天用量剩余第6章統(tǒng)計(jì)物理學(xué)基礎(chǔ)分別對(duì)它們列出狀態(tài)方程,有例2:在一個(gè)具有活塞的容器中盛有一定的氣體。如果壓縮氣體并對(duì)它加熱,使它的溫度從270C升到1770C,體積減少一半,這時(shí)氣體分子的平均平動(dòng)動(dòng)能變化多少?解:例3
就質(zhì)量而言,空氣是由76%的N2,23%的O2和1%的Ar三種氣體組成,它們的分子量分別為28、32、40??諝獾哪栙|(zhì)量為28.910-3kg,試計(jì)算1mol空氣在標(biāo)準(zhǔn)狀態(tài)下的內(nèi)能。解:在1摩爾空氣中N2質(zhì)量摩爾數(shù)O2質(zhì)量摩爾數(shù)1mol空氣在標(biāo)準(zhǔn)狀態(tài)下的內(nèi)能Ar質(zhì)量摩爾數(shù)下列各表達(dá)式的物理意義:?思考例4:有N個(gè)氣體分子,其速率分布函數(shù)為試求:(1)常數(shù)A;(2)最概然速率,平均速率和方均根速率;(3)速率介于0~v0/3之間的分子數(shù);(4)速率介于0~v0/3之間的氣體分子的平均速率。解:(1)氣體分子的分布曲線如圖由歸一化條件(2)最概然速率由決定,即平均速率方均根速率(3)速率介于0~v0/3之間的分子數(shù)(4)速率介于0~v0/3之間的氣體分子平均速率為討論速率介于v1~v2之間的氣體分子的平均速率的計(jì)算對(duì)于v的某個(gè)函數(shù)g(v),一般地,其平均值可以表示為例5
計(jì)算空氣分子在標(biāo)準(zhǔn)狀態(tài)下的平均自由程和平均碰撞頻率。取分子的有效直徑d=3.510-10m。已知空氣的平均分子量為29。解:已知空氣摩爾質(zhì)量為2910-3kg/mol空氣分子在標(biāo)準(zhǔn)狀態(tài)下的平均速率例7
氫原子基態(tài)能級(jí)E1=-13.6eV,第一激發(fā)態(tài)能級(jí)E2=-3.4eV,求出在室溫T=270C時(shí)原子處于第一激發(fā)態(tài)與基態(tài)的數(shù)目比。解:在室溫下,氫原子幾乎都處于基態(tài)。絕熱過(guò)程的功第7章熱力學(xué)基礎(chǔ)絕熱線與等溫線比較膨脹相同的體積絕熱比等溫壓強(qiáng)下降得快絕熱線等溫線等溫絕熱絕熱線比等溫線更陡。等容過(guò)程等壓過(guò)程等溫過(guò)程絕熱過(guò)程例1:1mol單原子理想氣體,由狀態(tài)a(p1,V1)先等壓加熱至體積增大一倍,再等容加熱至壓強(qiáng)增大一倍,最后再經(jīng)絕熱膨脹,使其溫度降至初始溫度。試求:
(1)狀態(tài)d的體積Vd;(2)整個(gè)過(guò)程對(duì)外所作的功;(3)整個(gè)過(guò)程吸收的熱量。解:(1)根據(jù)題意根據(jù)物態(tài)方程oVp2p1p1V12V1abcd根據(jù)絕熱方程(2)先求各分過(guò)程的功oVp2p1p1V12V1abcd(3)計(jì)算整個(gè)過(guò)程吸收的總熱量有兩種方法方法一:根據(jù)整個(gè)過(guò)程吸收的總熱量等于各分過(guò)程吸收熱量的和。oVp2p1p1V12V1abcd方法二:對(duì)abcd整個(gè)過(guò)程應(yīng)用熱力學(xué)第一定律:oVp2p1p1V12V1abcd例21mol氧氣作如圖所示的循環(huán).求循環(huán)效率.解:p0QpVV000等溫abc2VQQcaabbc例3
設(shè)有一以理想氣體為工質(zhì)的熱機(jī)循環(huán),如圖所示.試證其循環(huán)效率為證:等體過(guò)程吸熱絕熱過(guò)程等壓壓縮過(guò)程放熱循環(huán)效率四、克勞修斯熵與玻耳茲曼熵比較給出某狀態(tài)熵的絕對(duì)值只給出了從一個(gè)平衡態(tài)到另一個(gè)平衡態(tài)的過(guò)程中熵的變化對(duì)非平衡態(tài)也有意義玻耳茲曼熵更有意義只對(duì)系統(tǒng)的平衡態(tài)有意義是系統(tǒng)平衡態(tài)的函數(shù)克勞修斯熵玻耳茲曼熵例4:如圖,1mol氫氣,由狀態(tài)1沿三條不同的路徑到達(dá)狀態(tài)2,其中1-2為等溫線,1-4為絕熱線,其他過(guò)程見(jiàn)圖。試分別由下列三種過(guò)程計(jì)算氣體的熵的變化
S=S3-S1:(1)1-2-3;(2)1-3;(3)1-4-3.oVp4V1V2123oVp4V1V2123oVp4V1V2123例51kg0oC的冰,在0oC時(shí)完全熔化成水。已知冰的熔解熱為λ=334kJ/kg。求冰經(jīng)過(guò)熔化過(guò)程的熵變。并計(jì)算從冰到水微觀狀態(tài)數(shù)增大到幾倍。解:冰在0oC時(shí)等溫熔化,可設(shè)想它和一個(gè)0oC恒溫?zé)嵩唇佑|而進(jìn)行可逆的吸熱過(guò)程。例6:由絕熱壁構(gòu)成的容器中間用導(dǎo)熱隔板分成兩部分,如圖所示,體積均為V,各盛1mol同種理想氣體。開(kāi)始時(shí)A部溫度為TA,B部溫度為TB(<TA)。經(jīng)足夠長(zhǎng)時(shí)間兩部分氣體達(dá)到共同的熱平衡溫度T=(TA+TB)/2。試計(jì)算此熱傳導(dǎo)過(guò)程初、末兩態(tài)的熵差。解:該過(guò)程是不可逆過(guò)程系統(tǒng)總熵變等于子系統(tǒng)熵變和熵變?nèi)Q于子系統(tǒng)的初、末狀態(tài)。子系統(tǒng)體積保持不變,可用可逆等容過(guò)程代替該不可逆過(guò)程計(jì)算熵變。例71mol的理想氣體由初態(tài)(T1,V1)經(jīng)某過(guò)程到達(dá)末態(tài)(T2,V2),求熵變。設(shè)CV為恒量。3設(shè)想一可逆過(guò)程例1.電偶極子如圖已知:q、-q、r>>l,電偶極矩求:A點(diǎn)及B點(diǎn)的場(chǎng)強(qiáng)解:A點(diǎn)設(shè)+q和-q
的場(chǎng)強(qiáng)分別為和第8章靜電場(chǎng)對(duì)B點(diǎn):結(jié)論例2
計(jì)算電偶極子在均勻電場(chǎng)中所受的合力和合力矩已知解:合力合力矩將上式寫為矢量式力矩總是使電矩轉(zhuǎn)向的方向,以達(dá)到穩(wěn)定狀態(tài)可見(jiàn):力矩最大;力矩最小。例3
求一均勻帶電圓環(huán)軸線上任一點(diǎn)x處的電場(chǎng)。已知:q、a、x。yzxxpardq當(dāng)dq位置發(fā)生變化時(shí),它所激發(fā)的電場(chǎng)矢量構(gòu)成了一個(gè)圓錐面。由對(duì)稱性a.yzxdqyzxxpadqr
討論(1)當(dāng)?shù)姆较蜓豿軸正向當(dāng)?shù)姆较蜓豿軸負(fù)向(2)當(dāng)x=0,即在圓環(huán)中心處,當(dāng)x
(3)當(dāng)時(shí),這時(shí)可以把帶電圓環(huán)看作一個(gè)點(diǎn)電荷這正反映了點(diǎn)電荷概念的相對(duì)性例4
求均勻帶電圓盤軸線上任一點(diǎn)的電場(chǎng)。已知:q、R、x求:Ep解:細(xì)圓環(huán)所帶電量為由上題結(jié)論知:RPxr討論1.當(dāng)R>>x(無(wú)限大均勻帶電平面的場(chǎng)強(qiáng))2.當(dāng)R<<x1.求均勻電場(chǎng)中一半球面的電通量。2.在均勻電場(chǎng)
中,過(guò)YOZ平面內(nèi)面積為S的電通量。課堂練習(xí)四、高斯定理的應(yīng)用1.利用高斯定理求某些電通量例:設(shè)均勻電場(chǎng)和半徑為R的半球面的軸平行,計(jì)算通過(guò)半球面的電通量。位于中心q過(guò)每一面的通量課堂討論q1.立方體邊長(zhǎng)
a,求位于一頂點(diǎn)q移動(dòng)兩電荷對(duì)場(chǎng)強(qiáng)及通量的影響2.如圖討論利用高斯定理計(jì)算具有對(duì)稱性的電場(chǎng)2.若場(chǎng)強(qiáng)分布具有對(duì)稱性,則可選擇適當(dāng)?shù)母咚姑?使高斯定理中的E能以標(biāo)量形式從積分號(hào)內(nèi)提出來(lái)。S面是一個(gè)簡(jiǎn)單易求的曲面面積:1.對(duì)稱性分析,確定的大小及方向分布特征2.作高斯面,計(jì)算電通量及3.利用高斯定理求解步驟:解:對(duì)稱性分析具有球?qū)ΨQ作高斯面——球面電通量電量用高斯定理求解R++++++++++++++++qr例1.
均勻帶電球面的電場(chǎng)。已知R、q>0R+++++++++++++++rqRq解:r<R場(chǎng)強(qiáng)例2.均勻帶電球體的電場(chǎng)。已知q,Rr高斯面Rr高斯面r>R電量高斯定理場(chǎng)強(qiáng)電通量均勻帶電球體電場(chǎng)強(qiáng)度分布曲線εROrERσ
高斯面解:具有面對(duì)稱高斯面:柱面例3.求均勻帶電無(wú)限大平面的電場(chǎng),已知
S高斯面lr解:場(chǎng)具有軸對(duì)稱高斯面:圓柱面例4.求均勻帶電無(wú)限長(zhǎng)圓柱面的電場(chǎng),沿軸線方向單位長(zhǎng)度帶電量為。(1)r<R(2)r>R高斯面lr例1
、求電偶極子電場(chǎng)中任一點(diǎn)P的電勢(shì)由疊加原理其中例2、求均勻帶電圓環(huán)軸線上的電勢(shì)分布。已知:R、q解:方法一微元法方法二
定義法由電場(chǎng)強(qiáng)度的分布例3、求均勻帶電球面電場(chǎng)中電勢(shì)的分布,已知R,q解:方法一疊加法(微元法)任一圓環(huán)由圖
方法二定義法由高斯定理求出場(chǎng)強(qiáng)分布由定義解:場(chǎng)強(qiáng)分布電勢(shì)零點(diǎn)選在平板上例4.求無(wú)限大帶電平板的電勢(shì)分布課堂練習(xí):1.求等量異號(hào)的同心帶電球面的電勢(shì)差已知+q、-q、RA、RB解:由高斯定理由電勢(shì)差定義①求單位正電荷沿odc
移至c
,電場(chǎng)力所作的功②將單位負(fù)電荷由
O電場(chǎng)力所作的功2.如圖已知+q、-q、R例1.利用場(chǎng)強(qiáng)與電勢(shì)梯度的關(guān)系,計(jì)算均勻帶電細(xì)圓環(huán)軸線上一點(diǎn)的場(chǎng)強(qiáng)。解:電荷守恒定律靜電平衡條件電荷分布3、有導(dǎo)體存在時(shí)場(chǎng)強(qiáng)和電勢(shì)的計(jì)算例.已知R1R2R3qQ求①電荷及場(chǎng)強(qiáng)分布;球心的電勢(shì)②如用導(dǎo)線連接A、B,再作計(jì)算解:由高斯定理得電荷分布場(chǎng)強(qiáng)分布球心的電勢(shì)場(chǎng)強(qiáng)分布球殼外表面帶電②用導(dǎo)線連接A、B,再作計(jì)算連接A、B,中和練習(xí)已知:兩金屬板帶電分別為q1、q2
求:
1
、2
、3
、4例:計(jì)算球形電容器的能量已知RA、RB、
q解:場(chǎng)強(qiáng)分布取體積元能量課堂討論比較均勻帶電球面和均勻帶電球體所儲(chǔ)存的能量。已知:真空中I、
1、2、a建立坐標(biāo)系OXY任取電流元大小方向統(tǒng)一積分變量畢奧---薩伐爾定律的應(yīng)用例題1、載流直導(dǎo)線的磁場(chǎng)aXY第9章穩(wěn)恒磁場(chǎng)XYaP或:無(wú)限長(zhǎng)載流直導(dǎo)線半無(wú)限長(zhǎng)載流直導(dǎo)線直導(dǎo)線延長(zhǎng)線上a例題2、圓型電流軸線上的磁場(chǎng)已知:R、I,求軸線上P點(diǎn)的磁感應(yīng)強(qiáng)度。任取電流元寫出分量式大小方向分析對(duì)稱性結(jié)論方向:右手螺旋法則大?。狠d流圓環(huán)載流圓弧II圓心角圓心角討論:例題3、直螺線管電流的磁場(chǎng)單位長(zhǎng)度上匝數(shù)ndl段(電流強(qiáng)度ndl)1練習(xí)求圓心O點(diǎn)的如圖,OI練習(xí)2、無(wú)限長(zhǎng)載流直導(dǎo)線彎成如圖形狀求:P、R、S、T四點(diǎn)的解:P點(diǎn)方向R點(diǎn)方向已知:I,aS點(diǎn)方向方向T點(diǎn)方向方向方向方向2.在均勻磁場(chǎng)
中,過(guò)YOZ平面內(nèi)面積為S的磁通量。1.求均勻磁場(chǎng)中半球面的磁通量課堂練習(xí)靜電場(chǎng)穩(wěn)恒磁場(chǎng)磁場(chǎng)沒(méi)有保守性,它是非保守場(chǎng),或無(wú)勢(shì)場(chǎng)電場(chǎng)有保守性,它是保守場(chǎng),或有勢(shì)場(chǎng)電力線起于正電荷、止于負(fù)電荷。靜電場(chǎng)是有源場(chǎng)磁力線閉合、無(wú)自由磁荷磁場(chǎng)是無(wú)源場(chǎng)當(dāng)場(chǎng)源分布具有高度對(duì)稱性時(shí),利用安培環(huán)路定理計(jì)算磁感應(yīng)強(qiáng)度1.無(wú)限長(zhǎng)載流圓柱導(dǎo)體的磁場(chǎng)分布已知:I、R電流沿軸向,在截面上均勻分布IR三、安培環(huán)路定理的應(yīng)用電流分布——軸對(duì)稱分析對(duì)稱性磁場(chǎng)分布——軸對(duì)稱作積分環(huán)路并計(jì)算環(huán)流
利用安培環(huán)路定理求IR利用安培環(huán)路定理求IRlr
結(jié)論:無(wú)限長(zhǎng)載流圓柱導(dǎo)體。已知:I、RIR討論:長(zhǎng)直載流圓柱面。已知:I、RrRO練習(xí):同軸的兩筒狀導(dǎo)線通有等值反向的電流I,
求的分布。電場(chǎng)、磁場(chǎng)中典型結(jié)論的比較外內(nèi)內(nèi)外長(zhǎng)直圓柱面電荷均勻分布電流均勻分布長(zhǎng)直圓柱體長(zhǎng)直線已知:I、n(單位長(zhǎng)度導(dǎo)線匝數(shù))分析對(duì)稱性管內(nèi)磁力線平行于管軸管外靠近管壁處磁場(chǎng)為零...............2.長(zhǎng)直載流螺線管的磁場(chǎng)分布LR
計(jì)算環(huán)流利用安培環(huán)路定理求...............已知:I、N、R1、R2
N——導(dǎo)線總匝數(shù)分析對(duì)稱性磁力線分布如圖作積分回路如圖方向右手螺旋3.環(huán)形載流螺線管的磁場(chǎng)分布.....................................BrO計(jì)算環(huán)流利用安培環(huán)路定理求.....................................練習(xí):如圖,螺繞環(huán)截面為矩形,其上的電流為,外、內(nèi)半徑分別為,高為。導(dǎo)線總匝數(shù)為,求:1.磁感應(yīng)強(qiáng)度的分布2.通過(guò)截面的磁通量解:1.例1、均勻磁場(chǎng)中任意形狀導(dǎo)線所受的作用力受力大小方向如圖所示建坐標(biāo)系取分量積分取電流元解:推論在均勻磁場(chǎng)中任意形狀閉合載流線圈受合力為零練習(xí)如圖求半圓導(dǎo)線所受安培力方向豎直向上解:例2:求一無(wú)限長(zhǎng)直載流導(dǎo)線的磁場(chǎng)對(duì)另一直載流導(dǎo)線ab的作用力。已知:I1、I2、d、L方向:如圖所示Ldbal在電流I2上取電流元它在I1的磁場(chǎng)中所受磁力的方向如圖所示,其大小為由于各電流元受力方向一致,故其合力大小為解(1)線圈的磁矩Pm的方向與B成600角例3一半徑為R的半圓形閉合線圈,通有電流I,線圈放在均勻外磁場(chǎng)B中,B的方向與線圈平面成300,如右圖,設(shè)線圈有N匝,問(wèn):(1)線圈的磁矩是多少?(2)此時(shí)線圈所受力矩的大小和方向?磁力矩M的方向由確定,為垂直于B的方向向上。即從上往下俯視,線圈是逆時(shí)針(2)此時(shí)線圈所受力矩的大小為例已知:求:+++++++++++++L
均勻磁場(chǎng)平動(dòng)解:第10章電磁感應(yīng)與電磁波+++++++++++++L
典型結(jié)論特例++++++++++++++++++++++++++++++均勻磁場(chǎng)閉合線圈平動(dòng)均勻磁場(chǎng)轉(zhuǎn)動(dòng)例如圖,長(zhǎng)為L(zhǎng)的銅棒在磁感應(yīng)強(qiáng)度為的均勻磁場(chǎng)中,以角速度繞O軸轉(zhuǎn)動(dòng)。求:棒中感應(yīng)電動(dòng)勢(shì)的大小和方向。解:取微元方向例一直導(dǎo)線CD在一無(wú)限長(zhǎng)直電流磁場(chǎng)中作切割磁力線運(yùn)動(dòng)。求:動(dòng)生電動(dòng)勢(shì)。abIl解:方向非均勻磁場(chǎng)感生電場(chǎng)的計(jì)算例1
局限于半徑R
的圓柱形空間內(nèi)分布有均勻磁場(chǎng),方向如圖。磁場(chǎng)的變化率求:圓柱內(nèi)、外的分布。方向:逆時(shí)針?lè)较蛴懻撠?fù)號(hào)表示與反號(hào)與L
積分方向切向同向與
L
積分方向切向相反在圓柱體外,由于B=0上于是雖然上每點(diǎn)為0,在但在上則并非如此。由圖可知,這個(gè)圓面積包括柱體內(nèi)部分的面積,而柱體內(nèi)上故方向:逆時(shí)針?lè)较蜃愿械挠?jì)算步驟:Slμ例1、
試計(jì)算長(zhǎng)直螺線管的自感。已知:匝數(shù)N,橫截面積S,長(zhǎng)度l,磁導(dǎo)率
Slμ例2
求一環(huán)形螺線管的自感。已知:R1
、R2、h、Ndrdr例
有兩個(gè)直長(zhǎng)螺線管,它們繞在同一個(gè)圓柱面上。已知:
0、N1
、N2、l、S
求:互感系數(shù)稱K為耦合系數(shù)耦合系數(shù)的大小反映了兩個(gè)回路磁場(chǎng)耦合松緊的程度。由于在一般情況下都有漏磁通,所以耦合系數(shù)小于一。在此例中,線圈1的磁通全部通過(guò)線圈2,稱為無(wú)漏磁。在一般情況下例如圖.求同軸傳輸線之磁能及自感系數(shù)可得同軸電纜的自感系數(shù)為例:一短跑選手,在地球上以10s的時(shí)間跑完100m,在飛行速率為0.98c的飛船中觀測(cè)者看來(lái),這個(gè)選手跑了多長(zhǎng)時(shí)間和多長(zhǎng)距離(設(shè)飛船沿跑道的競(jìng)跑方向航行)?解:設(shè)地面為S系,飛船為S'系。第11章狹義相對(duì)性例:在慣性系S中,相距
x=5106m的兩個(gè)地方發(fā)生兩個(gè)事件,時(shí)間間隔
t=10-2s;而在相對(duì)于S系沿x軸正向勻速運(yùn)動(dòng)的S'系中觀測(cè)到這兩事件卻是同時(shí)發(fā)生的,試求:S'系中發(fā)生這兩事件的地點(diǎn)間的距離
x'。解:設(shè)S'系相對(duì)于S系的速度大小為u。例:設(shè)想一飛船以0.80c的速度在地球上空飛行,如果這時(shí)從飛船上沿速度方向發(fā)射一物體,物體相對(duì)飛船速度為0.90c
。問(wèn):從地面上看,物體速度多大?s解:選飛船參考系為S'系地面參考系為S系思考題:一宇宙飛船相對(duì)地球以0.8c的速度飛行。一光脈沖從船尾傳到船頭,飛船上的觀察者測(cè)得船長(zhǎng)90m,求:地球上的觀察測(cè)得光脈沖從船尾發(fā)出和到達(dá)船頭兩個(gè)事件的空間間隔。答案:270m例:原長(zhǎng)為10m的飛船以u(píng)=3×103m/s的速率相對(duì)于地面勻速飛行時(shí),從地面上測(cè)量,它的長(zhǎng)度是多少?解:差別很難測(cè)出。例:一根直桿在S系中,其靜止長(zhǎng)度為l,與x軸的夾角為
。試求:在S'系中的長(zhǎng)度和它與x'軸的夾角。兩慣性系相對(duì)運(yùn)動(dòng)速度為u。解:例、一飛船以3×103m/s的速率相對(duì)于地面勻速飛行。飛船上的鐘走了10s,地面上的鐘經(jīng)過(guò)了多少時(shí)間?解:飛船的時(shí)間膨脹效應(yīng)實(shí)際上很難測(cè)出例:宇宙射線進(jìn)入大氣層時(shí),會(huì)形成豐富的μ子。并以0.995c的速率飛向地面。已知實(shí)驗(yàn)室中μ子(靜止)的平均壽命為設(shè)大氣層厚度為6000m,試問(wèn)μ子能否在衰變前到達(dá)地面?設(shè)地為S系、μ子為Sˊ系。則解法二對(duì)Sˊ系對(duì)S系解法一對(duì)Sˊ系對(duì)S系可以到達(dá)地面對(duì)Sˊ系大氣火
車abu隧道AB在地面參照系S中看,火車長(zhǎng)度要縮短。思考題1:一火車以恒定速度通過(guò)隧道,火車和隧道的靜長(zhǎng)是相等的。從地面上看,當(dāng)火車的前端b到達(dá)隧道的B端的同時(shí),有一道閃電正擊中隧道的A端。試問(wèn)此閃電能否在火車的a端留下痕跡?在火車參照系S′中,隧道長(zhǎng)度縮短。但隧道的B端與火車b端相遇這一事件與隧道A端發(fā)生閃電的事件不是同時(shí)的,而是B端先與b端相遇,而后A處發(fā)生閃電,當(dāng)A端發(fā)生閃電時(shí),火車的a端已進(jìn)入隧道內(nèi),所以閃電仍不能擊中a端。隧道B端與火車b端相遇這一事件與A端發(fā)生閃
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 司機(jī)車主違章合同范本
- 南京勞務(wù)派遣合同范例
- 廠房出售合同范本
- 公路測(cè)繪合同范本
- 分?jǐn)傎M(fèi)用合同范例
- 三方供貨協(xié)議合同范本百度
- 冠名廣告贊助合同范本
- 發(fā)光字協(xié)議合同范本
- 印刷電子合同范本
- 廠房設(shè)計(jì)合作合同范本
- 2024年甘肅天水麥積山石窟藝術(shù)研究所招聘工作人員考試真題
- 2025年山東省榮成市屬事業(yè)單位招聘崗位及歷年高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 火星表面材料分析-深度研究
- 《職業(yè)技能等級(jí)評(píng)價(jià)規(guī)范編制指南編制說(shuō)明》
- 《教育強(qiáng)國(guó)建設(shè)規(guī)劃綱要(2024-2035年)》解讀講座
- 畜禽養(yǎng)殖場(chǎng)惡臭污染物排放及其處理技術(shù)研究進(jìn)展
- 超聲內(nèi)鏡引導(dǎo)下穿刺活檢術(shù)的配合及護(hù)理
- 新生兒常見(jiàn)的產(chǎn)傷及護(hù)理
- 代寫回憶錄合同
- 2024年10月自考00149國(guó)際貿(mào)易理論與實(shí)務(wù)試題及答案
- 2024年下半年教師資格考試《中學(xué)教育知識(shí)與能力》真題及答案解析
評(píng)論
0/150
提交評(píng)論