版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省滁州市海亮外國語學校2024屆高三高考考前指導卷(2)數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,正方形網(wǎng)格紙中的實線圖形是一個多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對 B.3對C.4對 D.5對2.已知函數(shù),則的最小值為()A. B. C. D.3.設數(shù)列的各項均為正數(shù),前項和為,,且,則()A.128 B.65 C.64 D.634.已知為定義在上的奇函數(shù),若當時,(為實數(shù)),則關于的不等式的解集是()A. B. C. D.5.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.6.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則7.已知函數(shù)的圖像向右平移個單位長度后,得到的圖像關于軸對稱,,當取得最小值時,函數(shù)的解析式為()A. B.C. D.8.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm39.復數(shù)()A. B. C.0 D.10.若,則“”的一個充分不必要條件是A. B.C.且 D.或11.已知為等比數(shù)列,,,則()A.9 B.-9 C. D.12.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則()A.170 B.10 C.172 D.12二、填空題:本題共4小題,每小題5分,共20分。13.已知定義在上的函數(shù)的圖象關于點對稱,,若函數(shù)圖象與函數(shù)圖象的交點為,則_____.14.若函數(shù)為奇函數(shù),則_______.15.已知三棱錐,,是邊長為4的正三角形,,分別是、的中點,為棱上一動點(點除外),,若異面直線與所成的角為,且,則______.16.若、滿足約束條件,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前n項和為,等比數(shù)列的前n項和為,且,,.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前n項和.18.(12分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.19.(12分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,為數(shù)列的前項和,記,證明:.20.(12分)正項數(shù)列的前n項和Sn滿足:(1)求數(shù)列的通項公式;(2)令,數(shù)列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.21.(12分)在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的參數(shù)方程為(為參數(shù)),直線經(jīng)過點且傾斜角為.(1)求曲線的極坐標方程和直線的參數(shù)方程;(2)已知直線與曲線交于,滿足為的中點,求.22.(10分)已知拋物線的焦點為,直線交于兩點(異于坐標原點O).(1)若直線過點,,求的方程;(2)當時,判斷直線是否過定點,若過定點,求出定點坐標;若不過定點,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】
畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【題目詳解】該幾何體是一個四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對.【題目點撥】本題考查了空間幾何體的三視圖,考查了四棱錐的結構特征,考查了面面垂直的證明,屬于中檔題.2、C【解題分析】
利用三角恒等變換化簡三角函數(shù)為標準正弦型三角函數(shù),即可容易求得最小值.【題目詳解】由于,故其最小值為:.故選:C.【題目點撥】本題考查利用降冪擴角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎題.3、D【解題分析】
根據(jù),得到,即,由等比數(shù)列的定義知數(shù)列是等比數(shù)列,然后再利用前n項和公式求.【題目詳解】因為,所以,所以,所以數(shù)列是等比數(shù)列,又因為,所以,.故選:D【題目點撥】本題主要考查等比數(shù)列的定義及等比數(shù)列的前n項和公式,還考查了運算求解的能力,屬于中檔題.4、A【解題分析】
先根據(jù)奇函數(shù)求出m的值,然后結合單調性求解不等式.【題目詳解】據(jù)題意,得,得,所以當時,.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【題目點撥】本題主要考查函數(shù)的性質應用,側重考查數(shù)學抽象和數(shù)學運算的核心素養(yǎng).5、B【解題分析】
據(jù)題意以菱形對角線交點為坐標原點建立平面直角坐標系,用坐標表示出,再根據(jù)坐標形式下向量的數(shù)量積運算計算出結果.【題目詳解】設與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標系,則,,,,,所以.故選:B.【題目點撥】本題考查建立平面直角坐標系解決向量的數(shù)量積問題,難度一般.長方形、正方形、菱形中的向量數(shù)量積問題,如果直接計算較麻煩可考慮用建系的方法求解.6、C【解題分析】
根據(jù)線面的位置關系,結合線面平行的判定定理、平行線的性質進行判斷即可.【題目詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【題目點撥】本題考查了線面的位置關系,考查了平行線的性質,考查了推理論證能力.7、A【解題分析】
先求出平移后的函數(shù)解析式,結合圖像的對稱性和得到A和.【題目詳解】因為關于軸對稱,所以,所以,的最小值是.,則,所以.【題目點撥】本題主要考查三角函數(shù)的圖像變換及性質.平移圖像時需注意x的系數(shù)和平移量之間的關系.8、B【解題分析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.9、C【解題分析】略10、C【解題分析】,∴,當且僅當時取等號.故“且”是“”的充分不必要條件.選C.11、C【解題分析】
根據(jù)等比數(shù)列的下標和性質可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質即可求出.【題目詳解】∵,∴,又,可解得或設等比數(shù)列的公比為,則當時,,∴;當時,,∴.故選:C.【題目點撥】本題主要考查等比數(shù)列的性質應用,意在考查學生的數(shù)學運算能力,屬于基礎題.12、D【解題分析】
中位數(shù)指一串數(shù)據(jù)按從小(大)到大(?。┡帕泻?,處在最中間的那個數(shù),平均數(shù)指一串數(shù)據(jù)的算術平均數(shù).【題目詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【題目點撥】本題考查莖葉圖的應用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、4038.【解題分析】
由函數(shù)圖象的對稱性得:函數(shù)圖象與函數(shù)圖象的交點關于點對稱,則,,即,得解.【題目詳解】由知:得函數(shù)的圖象關于點對稱又函數(shù)的圖象關于點對稱則函數(shù)圖象與函數(shù)圖象的交點關于點對稱則故,即本題正確結果:【題目點撥】本題考查利用函數(shù)圖象的對稱性來求值的問題,關鍵是能夠根據(jù)函數(shù)解析式判斷出函數(shù)的對稱中心,屬中檔題.14、-2【解題分析】
由是定義在上的奇函數(shù),可知對任意的,都成立,代入函數(shù)式可求得的值.【題目詳解】由題意,的定義域為,,是奇函數(shù),則,即對任意的,都成立,故,整理得,解得.故答案為:.【題目點撥】本題考查奇函數(shù)性質的應用,考查學生的計算求解能力,屬于基礎題.15、【解題分析】
取的中點,連接,,取的中點,連接,,,直線與所成的角為,計算,,根據(jù)余弦定理計算得到答案。【題目詳解】取的中點,連接,,依題意可得,,所以平面,所以,因為,分別、的中點,所以,因為,所以,所以平面,故,故,故兩兩垂直。取的中點,連接,,,因為,所以直線與所成的角為,設,則,,所以,化簡得,解得,即.故答案為:.【題目點撥】本題考查了根據(jù)異面直線夾角求長度,意在考查學生的計算能力和空間想象能力.16、【解題分析】
作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數(shù)取得最小時對應的最優(yōu)解,代入目標函數(shù)計算即可.【題目詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點,平移直線,當直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【題目點撥】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值問題,考查數(shù)形結合思想的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】
(1)設數(shù)列的公差為d,由可得,,由即可解得,故,由,即可解得,進而求得.(2)由(1)得,,利用分組求和及錯位相減法即可求得結果.【題目詳解】(1)設數(shù)列的公差為d,數(shù)列的公比為q,由可得,,整理得,即,故,由可得,則,即,故.(2)由(1)得,,,故,所以,數(shù)列的前n項和為,設①,則②,②①得,綜上,數(shù)列的前n項和為.【題目點撥】本題考查求等差等比的通項公式,考試分組求和及錯位相減法求數(shù)列的和,考查學生的計算能力,難度一般.18、(1)(2)或【解題分析】
(1)根據(jù)題意計算得到,,得到橢圓方程.(2)設,聯(lián)立方程得到,根據(jù),計算得到答案.【題目詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點.設,由消得,所以,因為,所以.因為點在以線段為直徑的圓上,所以,即,所以直線的方程或.【題目點撥】本題考查了橢圓方程,根據(jù)直線和橢圓的位置關系求直線,將題目轉化為是解題的關鍵.19、(Ⅰ),;(Ⅱ)見解析【解題分析】
(Ⅰ)由,且成等差數(shù)列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項相消法求,即可得到本題答案.【題目詳解】(Ⅰ)因為數(shù)列是各項均為正數(shù)的等比數(shù)列,,可設公比為q,,又成等差數(shù)列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因為,所以即.【題目點撥】本題主要考查等差等比數(shù)列的綜合應用,以及用裂項相消法求和并證明不等式,考查學生的運算求解能力和推理證明能力.20、(1)(2)見解析【解題分析】
(1)因為數(shù)列的前項和滿足:,所以當時,,即解得或,因為數(shù)列都是正項,所以,因為,所以,解得或,因為數(shù)列都是正項,所以,當時,有,所以,解得,當時,,符合所以數(shù)列的通項公式,;(2)因為,所以,所以數(shù)列的前項和為:,當時,有,所以,所以對于任意,數(shù)列的前項和.21、(1),;(2).【解題分析】
(1)由曲線的參數(shù)方程消去參數(shù)可得曲線的普通方程,由此可求曲線的極坐標方程;直接利用直線的傾斜角以及經(jīng)過的點求出直線的參數(shù)方程即可;(2)將直線的參數(shù)方程,代入曲線的普通方程,整理得,利用韋達定理,根據(jù)為的中點,解出即可.【題目詳解】(1)由(為參數(shù))消去參數(shù),可得,即,已知曲線的普通方程為,,,,即,曲線的極坐標方程為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建省2024年高考歷史壓軸卷含解析
- 誠信考試與假期安全教育
- 2024茶葉加盟合同范本
- 金融風險管理培訓課程
- 深圳大學《藥物分析》2023-2024學年第一學期期末試卷
- 邊溝勞務施工合同(2篇)
- 石方爆破開挖施工合同協(xié)議書
- 回風斜井巷修工程協(xié)議書(2篇)
- 軍訓總教官講話稿范文(8篇)
- 倉儲項目招投標關鍵點解析
- 方城縣城市運行管理服務平臺(智慧城管)項目方案匯報
- 第2章 空間數(shù)據(jù)結構
- 石油煉化廠項目保險建議書課件
- 三審制及工作制度
- 吸附式空氣干燥機操作規(guī)程
- 防電信網(wǎng)絡詐騙知識競賽題庫
- 植物景觀分析及種植設計原則課件
- 水和水蒸氣焓值計算XLS
- 滴滴出行行程報銷單(可編輯版)
- 無機材料物理性能5電導
- 中國高級經(jīng)理人心理狀況調查報告
評論
0/150
提交評論