湖南省湘潭縣一中、雙峰一中、邵東一中、永州四中2024屆高三學業(yè)水平考試數(shù)學試題理試題_第1頁
湖南省湘潭縣一中、雙峰一中、邵東一中、永州四中2024屆高三學業(yè)水平考試數(shù)學試題理試題_第2頁
湖南省湘潭縣一中、雙峰一中、邵東一中、永州四中2024屆高三學業(yè)水平考試數(shù)學試題理試題_第3頁
湖南省湘潭縣一中、雙峰一中、邵東一中、永州四中2024屆高三學業(yè)水平考試數(shù)學試題理試題_第4頁
湖南省湘潭縣一中、雙峰一中、邵東一中、永州四中2024屆高三學業(yè)水平考試數(shù)學試題理試題_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省湘潭縣一中、雙峰一中、邵東一中、永州四中2024屆高三學業(yè)水平考試數(shù)學試題理試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在等腰梯形中,,,,為的中點,將與分別沿、向上折起,使、重合為點,則三棱錐的外接球的體積是()A. B.C. D.2.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.3.若函數(shù)滿足,且,則的最小值是()A. B. C. D.4.若函數(shù)有且只有4個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.5.函數(shù)f(x)=2x-3A.[32C.[326.某高中高三(1)班為了沖刺高考,營造良好的學習氛圍,向班內(nèi)同學征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對三人進行了問話,得到回復如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細節(jié)決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李7.二項式的展開式中只有第六項的二項式系數(shù)最大,則展開式中的常數(shù)項是()A.180 B.90 C.45 D.3608.已知函數(shù),若,則下列不等關(guān)系正確的是()A. B.C. D.9.劉徽是我國魏晉時期偉大的數(shù)學家,他在《九章算術(shù)》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機取一個點,此點取自朱方的概率為()A. B. C. D.10.等差數(shù)列中,已知,且,則數(shù)列的前項和中最小的是()A.或 B. C. D.11.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若點在角的終邊上,則()A. B. C. D.12.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標為,則該雙曲線的標準方程可能為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)為偶函數(shù),則________.14.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.15.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.16.如圖所示,在△ABC中,AB=AC=2,,,AE的延長線交BC邊于點F,若,則____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計圖.(1)根據(jù)條形統(tǒng)計圖,估計本屆高三學生本科上線率.(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結(jié)果精確到0.01);(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數(shù)據(jù):取,.18.(12分)已知函數(shù).(1)若不等式有解,求實數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實數(shù),,滿足,證明:.19.(12分)已知函數(shù),其中,.(1)當時,求的值;(2)當?shù)淖钚≌芷跒闀r,求在上的值域.20.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.21.(12分)某芯片公司為制定下一年的研發(fā)投入計劃,需了解年研發(fā)資金投入量x(單位:億元)對年銷售額y(單位:億元)的影響.該公司對歷史數(shù)據(jù)進行對比分析,建立了兩個函數(shù)模型:①y=α+βx2,②y=eλx+t,其中現(xiàn)該公司收集了近12年的年研發(fā)資金投入量xi和年銷售額yi的數(shù)據(jù),i=1,2,?,12,并對這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點圖及一些統(tǒng)計量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設ui和yi的相關(guān)系數(shù)為r1,xi和(2)(i)根據(jù)(1)的選擇及表中數(shù)據(jù),建立y關(guān)于x的回歸方程(系數(shù)精確到0.01);(ii)若下一年銷售額y需達到90億元,預測下一年的研發(fā)資金投入量x是多少億元?附:①相關(guān)系數(shù)r=i=1n(xi-x②參考數(shù)據(jù):308=4×77,90≈9.4868,e22.(10分)移動支付(支付寶及微信支付)已經(jīng)漸漸成為人們購物消費的一種支付方式,為調(diào)查市民使用移動支付的年齡結(jié)構(gòu),隨機對100位市民做問卷調(diào)查得到列聯(lián)表如下:(1)將上列聯(lián)表補充完整,并請說明在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡是否有關(guān)?(2)在使用移動支付的人群中采用分層抽樣的方式抽取10人做進一步的問卷調(diào)查,從這10人隨機中選出3人頒發(fā)參與獎勵,設年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.(參考公式:(其中)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

由題意等腰梯形中的三個三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【題目詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長為1的正四面體,設是的中心,則平面,,,外接球球心必在高上,設外接球半徑為,即,∴,解得,球體積為.故選:A.【題目點撥】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體.2、D【解題分析】

根據(jù)雙曲線的一條漸近線方程為,列出方程,求出的值即可.【題目詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【題目點撥】本小題主要考查雙曲線離心率的求法,屬于基礎題.3、A【解題分析】

由推導出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【題目詳解】函數(shù)滿足,,即,,,,即,,則,由基本不等式得,當且僅當時,等號成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當時,取得最小值.故選:A.【題目點撥】本題考查代數(shù)式最值的計算,涉及對數(shù)運算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應用,考查計算能力,屬于中等題.4、B【解題分析】

由是偶函數(shù),則只需在上有且只有兩個零點即可.【題目詳解】解:顯然是偶函數(shù)所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【題目點撥】考查函數(shù)性質(zhì)的應用以及根據(jù)零點個數(shù)確定參數(shù)的取值范圍,基礎題.5、A【解題分析】

根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【題目詳解】因為函數(shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【題目點撥】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構(gòu)造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構(gòu)成的不等式(組)求解;(3)若已知函數(shù)fx的定義域為a,b,則函數(shù)fgx6、D【解題分析】

根據(jù)題意,分別假設一個正確,推理出與假設不矛盾,即可得出結(jié)論.【題目詳解】解:由題意知,若只有小王的說法正確,則小王對應“入班即靜”,而否定小董說法后得出:小王對應“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對應“天道酬勤”,否定小李的說法后得出:小李對應“細節(jié)決定成敗”,所以剩下小王對應“入班即靜”,但與小王的錯誤的說法矛盾;若小李的說法正確,則“細節(jié)決定成敗”不是小李的,則否定小董的說法得出:小王對應“天道酬勤”,所以得出“細節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【題目點撥】本題考查推理證明的實際應用.7、A【解題分析】試題分析:因為的展開式中只有第六項的二項式系數(shù)最大,所以,,令,則,.考點:1.二項式定理;2.組合數(shù)的計算.8、B【解題分析】

利用函數(shù)的單調(diào)性得到的大小關(guān)系,再利用不等式的性質(zhì),即可得答案.【題目詳解】∵在R上單調(diào)遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【題目點撥】本題考查分段函數(shù)的單調(diào)性、不等式性質(zhì)的運用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.9、C【解題分析】

首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【題目詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【題目點撥】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于基礎題.10、C【解題分析】

設公差為,則由題意可得,解得,可得.令

,可得

當時,,當時,,由此可得數(shù)列前項和中最小的.【題目詳解】解:等差數(shù)列中,已知,且,設公差為,

則,解得

,.

,可得,故當時,,當時,,

故數(shù)列前項和中最小的是.故選:C.【題目點撥】本題主要考查等差數(shù)列的性質(zhì),等差數(shù)列的通項公式的應用,屬于中檔題.11、D【解題分析】

由題知,又,代入計算可得.【題目詳解】由題知,又.故選:D【題目點撥】本題主要考查了三角函數(shù)的定義,誘導公式,二倍角公式的應用求值.12、A【解題分析】

直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項求解即可【題目詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A【題目點撥】本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標準方程,考查運算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

二次函數(shù)為偶函數(shù)說明一次項系數(shù)為0,求得參數(shù),將代入表達式即可求解【題目詳解】由為偶函數(shù),知其一次項的系數(shù)為0,所以,,所以,故答案為:-5【題目點撥】本題考查由奇偶性求解參數(shù),求函數(shù)值,屬于基礎題14、8【解題分析】

根據(jù)偽代碼逆向運算求得結(jié)果.【題目詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結(jié)果:【題目點撥】本題考查算法中的語言,屬于基礎題.15、【解題分析】

設點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【題目詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:【題目點撥】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.16、【解題分析】

過點做,可得,,由可得,可得,代入可得答案.【題目詳解】解:如圖,過點做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【題目點撥】本題主要考查平面向量的線性運算和平面向量的數(shù)量積,由題意作出是解題的關(guān)鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)60%;(2)(i)0.12(ii)【解題分析】

(1)利用上線人數(shù)除以總?cè)藬?shù)求解;(2)(i)利用二項分布求解;(ii)甲、乙兩市上線人數(shù)分別記為X,Y,得,.,利用期望公式列不等式求解【題目詳解】(1)估計本科上線率為.(2)(i)記“恰有8名學生達到本科線”為事件A,由圖可知,甲市每個考生本科上線的概率為0.6,則.(ii)甲、乙兩市2020屆高考本科上線人數(shù)分別記為X,Y,依題意,可得,.因為2020屆高考本科上線人數(shù)乙市的均值不低于甲市,所以,即,解得,又,故p的取值范圍為.【題目點撥】本題考查二項分布的綜合應用,考查計算求解能力,注意二項分布與超幾何分布是易混淆的知識點.18、(1)(2)見解析【解題分析】

(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即可證明不等式.【題目詳解】解:(1)設,∴在上單調(diào)遞減,在上單調(diào)遞增.故.∵有解,∴.即的取值范圍為.(2),當且僅當時等號成立.∴,即.∵.當且僅當,,時等號成立.∴,即成立.【題目點撥】此題考查不等式的證明,注意定值乘變化的靈活應用,屬于較易題目.19、(1)(2)【解題分析】

(1)根據(jù),得到函數(shù),然后,直接求解的值;(2)首先,化簡函數(shù),然后,結(jié)合周期公式,得到,再結(jié)合,及正弦函數(shù)的性質(zhì)解答即可.【題目詳解】(1)因為,所以(2)因為即因為,所以所以因為所以所以當時,.當時,(最大值)當時,在是增函數(shù),在是減函數(shù).的值域是.【題目點撥】本題主要考查了簡單角的三角函數(shù)值的求解方法,兩角和與差的正弦、余弦公式,三角函數(shù)的圖象與性質(zhì)等知識,考查了運算求解能力,屬于中檔題.20、(1)(2)證明見解析(3)證明見解析【解題分析】

(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導出,,由此能證明的“極差數(shù)列”仍是.(3)證當數(shù)列是等差數(shù)列時,設其公差為,,是一個單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【題目詳解】(1)解:∵無窮數(shù)列的前項中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當數(shù)列是等差數(shù)列時,設其公差為,,根據(jù),的定義,得:,,且兩個不等式中至少有一個取等號,當時,必有,∴,∴是一個單調(diào)遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當時,則必有,∴,∴是一個單調(diào)遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當時,,∵,中必有一個為0,根據(jù)上式,一個為0,為一個必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【題目點撥】本小題主要考查新定義數(shù)列的理解和運用,考查等差數(shù)列的證明,考查數(shù)列的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.21、(1)模型y=eλx+t的擬合程度更好;(2)(i)v=0.02x+3.84【解題分析】

(1)由相關(guān)系數(shù)求出兩個系數(shù),比較大小可得;(2)(i)先建立U額R0關(guān)于x的線性回歸方程,從而得出y(ii)把y=90代入(i)中的回歸方程可得x值.【題目詳解】本小題主要考查回歸分析等基礎知識,考查數(shù)據(jù)處理能力、運算求解能力、抽象概括能力及應用意識,考查統(tǒng)計與概率思想、分類與整合思想,考查數(shù)學抽象、數(shù)學運算、數(shù)學建模、數(shù)據(jù)分析等核心素養(yǎng),體現(xiàn)基礎性、綜合性與應用性.解:(1)r1r2則r1<r(2)(i)先建立U額R0由y=eλx+t,得lny=t+λx由于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論