




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省A佳經(jīng)典聯(lián)考試題2024屆高三下學(xué)期第一次測試數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.元代數(shù)學(xué)家朱世杰的數(shù)學(xué)名著《算術(shù)啟蒙》是中國古代代數(shù)學(xué)的通論,其中關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,,則輸出的()A.3 B.4 C.5 D.62.已知過點且與曲線相切的直線的條數(shù)有().A.0 B.1 C.2 D.33.在等差數(shù)列中,,,若(),則數(shù)列的最大值是()A. B.C.1 D.34.已知實數(shù),則下列說法正確的是()A. B.C. D.5.已知函數(shù),若,使得,則實數(shù)的取值范圍是()A. B.C. D.6.如圖1,《九章算術(shù)》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風(fēng)折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.7.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現(xiàn)隨機(jī)等可能取出小球,當(dāng)有放回依次取出兩個小球時,記取出的紅球數(shù)為;當(dāng)無放回依次取出兩個小球時,記取出的紅球數(shù)為,則()A., B.,C., D.,9.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準(zhǔn)線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.10.一個盒子里有4個分別標(biāo)有號碼為1,2,3,4的小球,每次取出一個,記下它的標(biāo)號后再放回盒子中,共取3次,則取得小球標(biāo)號最大值是4的取法有()A.17種 B.27種 C.37種 D.47種11.相傳黃帝時代,在制定樂律時,用“三分損益”的方法得到不同的竹管,吹出不同的音調(diào).如圖的程序是與“三分損益”結(jié)合的計算過程,若輸入的的值為1,輸出的的值為()A. B. C. D.12.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.8二、填空題:本題共4小題,每小題5分,共20分。13.在直三棱柱內(nèi)有一個與其各面都相切的球O1,同時在三棱柱外有一個外接球.若,,,則球的表面積為______.14.下圖是一個算法流程圖,則輸出的的值為__________.15.已知數(shù)列{an}的前n項和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數(shù)列{}前2020項和為_____16.函數(shù)在處的切線方程是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足且(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.18.(12分)已知等差數(shù)列滿足,.(l)求等差數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.19.(12分)如圖,在四棱柱中,底面是正方形,平面平面,,.過頂點,的平面與棱,分別交于,兩點.(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說明理由.20.(12分)已知函數(shù).當(dāng)時,求不等式的解集;,,求a的取值范圍.21.(12分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對于函數(shù)的圖象上兩點,存在,使得函數(shù)的圖象在處的切線.求證:.22.(10分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.(Ⅰ)證明:;(Ⅱ)設(shè),,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解:記執(zhí)行第次循環(huán)時,的值記為有,則有;記執(zhí)行第次循環(huán)時,的值記為有,則有.令,則有,故,故選B.點睛:本題為算法中的循環(huán)結(jié)構(gòu)和數(shù)列通項的綜合,屬于中檔題,解題時注意流程圖中蘊含的數(shù)列關(guān)系(比如相鄰項滿足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項積等).2、C【解題分析】
設(shè)切點為,則,由于直線經(jīng)過點,可得切線的斜率,再根據(jù)導(dǎo)數(shù)的幾何意義求出曲線在點處的切線斜率,建立關(guān)于的方程,從而可求方程.【題目詳解】若直線與曲線切于點,則,又∵,∴,∴,解得,,∴過點與曲線相切的直線方程為或,故選C.【題目點撥】本題主要考查了利用導(dǎo)數(shù)求曲線上過某點切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導(dǎo)數(shù)的幾何意義求解切線的方程是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.3、D【解題分析】
在等差數(shù)列中,利用已知可求得通項公式,進(jìn)而,借助函數(shù)的的單調(diào)性可知,當(dāng)時,取最大即可求得結(jié)果.【題目詳解】因為,所以,即,又,所以公差,所以,即,因為函數(shù),在時,單調(diào)遞減,且;在時,單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.【題目點撥】本題考查等差數(shù)列的通項公式,考查數(shù)列與函數(shù)的關(guān)系,借助函數(shù)單調(diào)性研究數(shù)列最值問題,難度較易.4、C【解題分析】
利用不等式性質(zhì)可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性判斷.【題目詳解】解:對于實數(shù),,不成立對于不成立.對于.利用對數(shù)函數(shù)單調(diào)遞增性質(zhì),即可得出.對于指數(shù)函數(shù)單調(diào)遞減性質(zhì),因此不成立.故選:.【題目點撥】利用不等式性質(zhì)比較大小.要注意不等式性質(zhì)成立的前提條件.解決此類問題除根據(jù)不等式的性質(zhì)求解外,還經(jīng)常采用特殊值驗證的方法.5、C【解題分析】試題分析:由題意知,當(dāng)時,由,當(dāng)且僅當(dāng)時,即等號是成立,所以函數(shù)的最小值為,當(dāng)時,為單調(diào)遞增函數(shù),所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數(shù)的綜合問題.【方法點晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.6、B【解題分析】如圖,已知,,
∴,解得
,∴,解得
.∴折斷后的竹干高為4.55尺故選B.7、B【解題分析】
化簡復(fù)數(shù)為的形式,然后判斷復(fù)數(shù)的對應(yīng)點所在象限,即可求得答案.【題目詳解】對應(yīng)的點的坐標(biāo)為在第二象限故選:B.【題目點撥】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.8、B【解題分析】
分別求出兩個隨機(jī)變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【題目詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【題目點撥】離散型隨機(jī)變量的分布列的計算,應(yīng)先確定隨機(jī)變量所有可能的取值,再利用排列組合知識求出隨機(jī)變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.9、D【解題分析】
根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【題目詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設(shè)雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【題目點撥】本題考查拋物線及雙曲線的方程及簡單性質(zhì),考查轉(zhuǎn)化思想,考查計算能力,屬于中檔題.10、C【解題分析】
由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標(biāo)號均不為4的球的情況,進(jìn)而求解.【題目詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標(biāo)號最大值是4的取法有種,故選:C【題目點撥】本題考查古典概型,考查補(bǔ)集思想的應(yīng)用,屬于基礎(chǔ)題.11、B【解題分析】
根據(jù)循環(huán)語句,輸入,執(zhí)行循環(huán)語句即可計算出結(jié)果.【題目詳解】輸入,由題意執(zhí)行循環(huán)結(jié)構(gòu)程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結(jié)果.故選:【題目點撥】本題考查了循環(huán)語句的程序框圖,求輸出的結(jié)果,解答此類題目時結(jié)合循環(huán)的條件進(jìn)行計算,需要注意跳出循環(huán)的判定語句,本題較為基礎(chǔ).12、A【解題分析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【題目詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【題目點撥】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
先求出球O1的半徑,再求出球的半徑,即得球的表面積.【題目詳解】解:,,,,設(shè)球O1的半徑為,由題得,所以棱柱的側(cè)棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【題目點撥】本題主要考查幾何體的內(nèi)切球和外接球問題,考查球的表面積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于中檔題.14、3【解題分析】
分析程序中各變量、各語句的作用,根據(jù)流程圖所示的順序,即可得出結(jié)論.【題目詳解】解:初始,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;經(jīng)判斷,此時跳出循環(huán),輸出.故答案為:【題目點撥】本題考查了程序框圖的應(yīng)用問題,解題的關(guān)鍵是對算法語句的理解,屬基礎(chǔ)題.15、【解題分析】
由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時,a1=S1=1.當(dāng)n≥2時,an=Sn﹣Sn﹣1.可得:2().利用裂項求和方法即可得出.【題目詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時,a1=S1=1.當(dāng)n≥2時,an=Sn﹣Sn﹣1.,滿足上式,.∴2().∴數(shù)列{}前2020項和為2(1)=2(1).故答案為:.【題目點撥】本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)列遞推關(guān)系、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.16、【解題分析】
求出和的值,利用點斜式可得出所求切線的方程.【題目詳解】,則,,.因此,函數(shù)在處的切線方程是,即.故答案為:.【題目點撥】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程,考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】
(1)根據(jù)已知可得數(shù)列為等比數(shù)列,即可求解;(2)由(1)可得為等比數(shù)列,根據(jù)等比數(shù)列和等差數(shù)列的前項和公式,即可求解.【題目詳解】(1)因為,所以,又所以數(shù)列為等比數(shù)列,且首項為,公比為.故(2)由(1)知,所以所以【題目點撥】本題考查等比數(shù)列的定義及通項公式、等差數(shù)列和等比數(shù)列的前項和,屬于基礎(chǔ)題.18、(1);(2).【解題分析】試題分析:(1)設(shè)等差數(shù)列滿的首項為,公差為,代入兩等式可解。(2)由(1),代入得,所以通過裂項求和可求得。試題解析:(1)設(shè)等差數(shù)列的公差為,則由題意可得,解得.所以.(2)因為,所以.所以.19、(1)證明見解析;(2)證明見解析;(3)不能為.【解題分析】
(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點,延長交于點,連接,根據(jù)三垂線定理,確定二面角的平面角,若,,由大角對大邊知,兩者矛盾,故二面角的大小不能為.【題目詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(3)不能.如圖,作交于點,延長交于點,連接,由,,,所以平面,則平面,又,根據(jù)三垂線定理,得到,所以是二面角的平面角,若,則是等腰直角三角形,,又,所以中,由大角對大邊知,所以,這與上面相矛盾,所以二面角的大小不能為.【題目點撥】本題考查了立體幾何中的線線平行和垂直的判定問題,和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,屬中檔題.20、(1);(2).【解題分析】
(1)當(dāng)時,,①當(dāng)時,,令,即,解得,②當(dāng)時,,顯然成立,所以,③當(dāng)時,,令,即,解得,綜上所述,不等式的解集為.(2)因為,因為,有成立,所以只需,解得,所以a的取值范圍為.【題目點撥】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.21、(1)見解析(2)見證明【解題分析】
(1)對函數(shù)求導(dǎo),分別討論,以及,即可得出結(jié)果;(2)根據(jù)題意,由導(dǎo)數(shù)幾何意義得到,將證明轉(zhuǎn)化為證明即可,再
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 筆譯服務(wù)合同(翻譯中心)-服務(wù)合同7篇
- 2025年龍巖貨運資格證考試真題
- 學(xué)校燈光改造工程合同
- 勞務(wù)派遣合同模本
- 工程分包合同總公司與分公司
- 英語基礎(chǔ)題試卷小學(xué)
- 小學(xué)課外英語試卷
- 配電控制設(shè)備市場分析及競爭策略分析報告
- 簡單的競標(biāo)合同范本
- 分包木工材料合同范本
- 《井中分布式光纖聲波傳感數(shù)據(jù)采集規(guī)程》標(biāo)準(zhǔn)報批稿
- 人音版 音樂 八年級下冊 第一單元 我和你教案
- 教育戲劇在小學(xué)教育中的應(yīng)用研究 論文
- 2024年江蘇經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫及參考答案
- 2024年青島港灣職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫必考題
- python程序設(shè)計-說課
- 標(biāo)識標(biāo)牌制作及安裝項目技術(shù)方案
- 《糖尿病患者血脂管理中國專家共識(2024版)》解讀
- 醫(yī)療器械物價收費申請流程
- DB32T4124-2021廢水污染物自動監(jiān)測設(shè)備參數(shù)傳輸技術(shù)規(guī)范
- 保單服務(wù)專員技能提升培訓(xùn)結(jié)課考試附有答案
評論
0/150
提交評論