2023-2024學年陜西省西安市西安鐵一中學數(shù)學九年級第一學期期末復習檢測模擬試題含解析_第1頁
2023-2024學年陜西省西安市西安鐵一中學數(shù)學九年級第一學期期末復習檢測模擬試題含解析_第2頁
2023-2024學年陜西省西安市西安鐵一中學數(shù)學九年級第一學期期末復習檢測模擬試題含解析_第3頁
2023-2024學年陜西省西安市西安鐵一中學數(shù)學九年級第一學期期末復習檢測模擬試題含解析_第4頁
2023-2024學年陜西省西安市西安鐵一中學數(shù)學九年級第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年陜西省西安市西安鐵一中學數(shù)學九年級第一學期期末復習檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠ACD=40°,則∠BAD為()A.40° B.50° C.60° D.70°2.下列函數(shù)是關于的反比例函數(shù)的是()A. B. C. D.3.如圖,AD∥BE∥CF,AB=3,BC=6,DE=2,則EF的值為()A.2 B.3 C.4 D.54.《孫子算經》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺,木長幾何?”譯文大致是:“用一根繩子去量一根木條,繩子剩余尺;將繩子對折再量木條,木條剩余尺,問木條長多少尺?”如果設木條長尺,繩子長尺,可列方程組為()A. B. C. D.5.拋物線y=2(x-1)2-6的對稱軸是().A.x=-6 B.x=-1 C.x= D.x=16.二次函數(shù)的圖象是一條拋物線,下列關于該拋物線的說法正確的是()A.拋物線開口向下 B.拋物線與軸有兩個交點C.拋物線的對稱軸是直線=1 D.拋物線經過點(2,3)7.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,當y>0時,x的取值范圍是()A.-1<x<2 B.x>2 C.x<-1 D.x<-1或x>28.用配方法解方程x2+3=4x,配方后的方程變?yōu)?)A.(x-2)2=7 B.(x+2)2=1C.(x-2)2=1 D.(x+2)2=29.如圖,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,點C和點M重合,點B、C(M)、N在同一直線上,令Rt△PMN不動,矩形ABCD沿MN所在直線以每秒1cm的速度向右移動,至點C與點N重合為止,設移動x秒后,矩形ABCD與△PMN重疊部分的面積為y,則y與x的大致圖象是()A. B. C. D.10.關于的一元二次方程,則的條件是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,Rt△ABC中,∠ACB=90°,BC=3,tanA=,將Rt△ABC繞點C順時針旋轉90°得到△DEC,點F是DE上一動點,以點F為圓心,F(xiàn)D為半徑作⊙F,當FD=_____時,⊙F與Rt△ABC的邊相切.12.如圖,一段與水平面成30°角的斜坡上有兩棵樹,兩棵樹水平距離為,樹的高度都是.一只小鳥從一棵樹的頂端飛到另一棵樹的頂端,小鳥至少要飛____________.13.已知一組數(shù)據(jù):4,4,,6,6的平均數(shù)是5,則這組數(shù)據(jù)的方差是______.14.已知正比例函數(shù)的圖像與反比例函數(shù)的圖像有一個交點的坐標是,則它們的另一個交點坐標為_________.15.用反證法證明命題“若⊙O的半徑為r,點P到圓心的距離為d,且d>r,則點P在⊙O的外部”,首先應假設P在__________.16.已知圓錐的側面積為16πcm2,圓錐的母線長8cm,則其底面半徑為_____cm.17.一元二次方程配方后得,則的值是__________.18.如圖,在平面直角坐標系中,拋物線與軸交于點,過點作軸的平行線交拋物線于點.為拋物線的頂點.若直線交直線于點,且為線段的中點,則的值為_____.三、解答題(共66分)19.(10分)“紅燈停,綠燈行”是我們過路口遇見交通信號燈時必須遵守的規(guī)則.小明每天從家騎自行車上學要經過三個路口,假如每個路口交通信號燈中紅燈和綠燈亮的時間相同,且每個路口的交通信號燈只安裝了紅燈和綠燈.那么某天小明從家騎車去學校上學,經過三個路口抬頭看到交通信號燈.(1)請畫樹狀圖,列舉小明看到交通信號燈可能出現(xiàn)的所有情況;(2)求小明途經三個路口都遇到紅燈的概率.20.(6分)元元同學在數(shù)學課上遇到這樣一個問題:如圖1,在平面直角坐標系中,⊙經過坐標原點,并與兩坐標軸分別交于、兩點,點的坐標為,點在⊙上,且,求⊙的半徑.圖1圖2元元的做法如下,請你幫忙補全解題過程.解:如圖2,連接,是⊙的直徑.(依據(jù)是)且(依據(jù)是).即⊙的半徑為.21.(6分)解方程(1)x2-6x-7=0;(2)(2x-1)2=1.22.(8分)如圖,在⊙O中,點D是⊙O上的一點,點C是直徑AB延長線上一點,連接BD,CD,且∠A=∠BDC.(1)求證:直線CD是⊙O的切線;(2)若CM平分∠ACD,且分別交AD,BD于點M,N,當DM=2時,求MN的長.23.(8分)解方程:4x2﹣8x+3=1.24.(8分)某公司營銷兩種產品,根據(jù)市場調研,確定兩條信息:信息1:銷售種產品所獲利潤(萬元)與所銷售產品(噸)之間存在二次函數(shù)關系,如圖所示信息2:銷售種產品所獲利潤(萬元)與銷售產品(噸)之間存在正比例函數(shù)關系根據(jù)以上信息,解答下列問題:(1)求二次函數(shù)的表達式;(2)該公司準備購進兩種產品共10噸,請設計一個營銷方案使銷售兩種產品獲得的利潤之和最大,最大利潤是多少萬元?25.(10分)如圖①,在平行四邊形中,以O為圓心,為半徑的圓與相切于點B,與相交于點D.(1)求的度數(shù).(2)如圖②,點E在上,連結與交于點F,若,求的度數(shù).26.(10分)如圖,已知中,以為直徑的⊙交于,交于,,求的度數(shù).

參考答案一、選擇題(每小題3分,共30分)1、B【分析】連接BD,根據(jù)直徑所對的圓周角是直角可得∠ADB的度數(shù),然后在根據(jù)同弧所對的圓周角相等即可解決問題.【詳解】解:如圖,連接BD.∵AB是直徑,∴∠ADB=90°,∵∠B=∠C=40°,∴∠DAB=90°﹣40°=50°,故選:B.【點睛】本題考查的是直徑所對的圓周角是直角與同弧所對的圓周角相等的知識,能夠連接BD是解題的關鍵.2、B【分析】根據(jù)反比例函數(shù)的定義進行判斷.【詳解】A.,是一次函數(shù),此選項錯誤;B.,是反比例函數(shù),此選項正確;C.,是二次函數(shù),此選項錯誤;D.,是y關于(x+1)的反比例函數(shù),此選項錯誤.故選:B【點睛】本題考查了反比例函數(shù)的定義,解題的關鍵是掌握反比例函數(shù)的定義.3、C【分析】根據(jù)平行線分線段成比例定理即可得出答案.【詳解】∵AD∥BE∥CF,∴.∵AB=3,BC=6,DE=2,∴,∴EF=1.故選C.【點睛】本題考查了平行線分線段成比例定理,掌握定理的內容是解題的關鍵.4、D【分析】根據(jù)“一根繩子去量一根木條,繩子剩余4.5尺”可知:繩子-木條=4.5,再根據(jù)“將繩子對折再量木條,木條剩余1尺”可知:木條-繩子=1,據(jù)此列出方程組即可.【詳解】由題意可得,.故選:D.【點睛】本題考查二元一次方程組的實際應用,解題的關鍵是明確題意,找出等量關系,列出相應的二元一次方程組.5、D【解析】根據(jù)拋物線的頂點式,直接得出結論即可.【詳解】解:∵拋物線y=2(x-1)2-6,

∴拋物線的對稱軸是x=1.

故選D.【點睛】本題考查了二次函數(shù)的性質,要熟悉二次函數(shù)的頂點式:y=a(x-h)2+k(a≠0),其頂點坐標為(h,k),對稱軸為x=h.6、B【詳解】A、a=2,則拋物線y=2x2-3的開口向上,所以A選項錯誤;B、當y=0時,2x2-3=0,此方程有兩個不相等的實數(shù)解,即拋物線與x軸有兩個交點,所以B選項正確;C、拋物線的對稱軸為直線x=0,所以C選項錯誤;D、當x=2時,y=2×4-3=5,則拋物線不經過點(2,3),所以D選項錯誤,故選B.7、D【分析】根據(jù)已知圖象可以得到圖象與x軸的交點是(-1,0),(2,0),又y>0時,圖象在x軸的上方,由此可以求出x的取值范圍.【詳解】依題意得圖象與x軸的交點是(-1,0),(2,0),當y>0時,圖象在x軸的上方,此時x<-1或x>2,∴x的取值范圍是x<-1或x>2,故選D.【點睛】本題考查了二次函數(shù)與不等式,解答此題的關鍵是求出圖象與x軸的交點,然后由圖象找出當y>0時,自變量x的范圍,注意數(shù)形結合思想的運用.8、C【分析】將方程常數(shù)項移到右邊,未知項移到左邊,然后兩邊都加上4,左邊化為完全平方式,右邊合并即可得到結果.【詳解】x2+3=4x,整理得:x2-4x=-3,配方得:x2-4x+4=4-3,即(x-2)2=1.故選C.【點睛】此題考查了解一元二次方程-配方法,利用此方法解方程時,首先將方程常數(shù)項移到右邊,未知項移到左邊,二次項系數(shù)化為1,然后方程兩邊都加上一次項系數(shù)一半的平方,左邊化為完全平方式,開方即可求出解.9、A【解析】分析:在Rt△PMN中解題,要充分運用好垂直關系和45度角,因為此題也是點的移動問題,可知矩形ABCD以每秒1cm的速度由開始向右移動到停止,和Rt△PMN重疊部分的形狀可分為下列三種情況,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根據(jù)重疊圖形確定面積的求法,作出判斷即可.詳解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由題意得:CM=x,分三種情況:①當0≤x≤2時,如圖1,邊CD與PM交于點E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此時矩形ABCD與△PMN重疊部分是△EMC,∴y=S△EMC=CM?CE=;故選項B和D不正確;②如圖2,當D在邊PN上時,過P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此時x=4,當2<x≤4時,如圖3,矩形ABCD與△PMN重疊部分是四邊形EMCD,過E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD?(DE+CM)==2x﹣2;③當4<x≤6時,如圖4,矩形ABCD與△PMN重疊部分是五邊形EMCGF,過E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,故選項A正確;故選:A.點睛:此題是動點問題的函數(shù)圖象,有難度,主要考查等腰直角三角形的性質和矩形的性質的應用、動點運動問題的路程表示,注意運用數(shù)形結合和分類討論思想的應用.10、C【解析】根據(jù)一元二次方程的定義即可得.【詳解】由一元二次方程的定義得解得故選:C.【點睛】本題考查了一元二次方程的定義,熟記定義是解題關鍵.二、填空題(每小題3分,共24分)11、或【分析】如圖1,當⊙F與Rt△ABC的邊AC相切時,切點為H,連接FH,則HF⊥AC,解直角三角形得到AC=4,AB=5,根據(jù)旋轉的性質得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根據(jù)相似三角形的性質得到DF=;如圖2,當⊙F與Rt△ABC的邊AC相切時,延長DE交AB于H,推出點H為切點,DH為⊙F的直徑,根據(jù)相似三角形的性質即可得到結論.【詳解】如圖1,當⊙F與Rt△ABC的邊AC相切時,切點為H,連接FH,則HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tanA==,∴AC=4,AB=5,將Rt△ABC繞點C順時針旋轉90°得到△DEC,∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,∵FH⊥AC,CD⊥AC,∴FH∥CD,∴△EFH∽△EDC,∴=,∴=,解得:DF=;如圖2,當⊙F與Rt△ABC的邊AC相切時,延長DE交AB于H,∵∠A=∠D,∠AEH=∠DEC∴∠AHE=90°,∴點H為切點,DH為⊙F的直徑,∴△DEC∽△DBH,∴=,∴=,∴DH=,∴DF=,綜上所述,當FD=或時,⊙F與Rt△ABC的邊相切,故答案為:或.【點睛】本題考查了切線的判定和性質,相似三角形的判定和性質,旋轉的性質,正確的作出輔助線是解題的關鍵.12、1【分析】依題意可知所求的長度等于AB的長,通過解直角△ABC即可求解.【詳解】如圖,∵∠BAC=30,∠ACB=90,AC=,∴AB=AC/cos30=(m).故答案是:1.【點睛】本題考查了解直角三角形的應用?坡度坡角問題.應用問題盡管題型千變萬化,但關鍵是設法化歸為解直角三角形問題,必要時應添加輔助線,構造出直角三角形.13、0.8【分析】根據(jù)平均數(shù)是5,求m值,再根據(jù)方差公式計算,方差公式為:(表示樣本的平均數(shù),n表示樣本數(shù)據(jù)的個數(shù),S2表示方差.)【詳解】解:∵4,4,,6,6的平均數(shù)是5,∴4+4+m+6+6=5×5,∴m=5,∴這組數(shù)據(jù)為4,4,,6,6,∴,即這組數(shù)據(jù)的方差是0.8.故答案為:0.8.【點睛】本題考查樣本的平均數(shù)和方差的定義,掌握定義是解答此題的關鍵.14、(-1,-2)【分析】根據(jù)反比例函數(shù)圖象的對稱性得到反比例函數(shù)圖象與正比例函數(shù)圖象的兩個交點關于原點對稱,所以寫出點關于原點對稱的點的坐標即可.【詳解】∵正比例函數(shù)的圖像與反比例函數(shù)的圖像的兩個交點關于原點對稱,其中一個交點的坐標為,∴它們的另一個交點的坐標是.

故答案為:.【點睛】本題主要考查了反比例函數(shù)圖象的中心對稱性,理解反比例函數(shù)與正比例函數(shù)的交點一定關于原點對稱是關鍵.15、⊙O上或⊙O內【分析】直接利用反證法的基本步驟得出答案.【詳解】解:用反證法證明命題“若⊙O的半徑為r,點P到圓心的距離為d,且d>r,則點P在⊙O的外部”,

首先應假設:若⊙O的半徑為r,點P到圓心的距離為d,且d>r,則點P在⊙O上或⊙O內.

故答案為:在⊙O上或⊙O內.【點睛】此題主要考查了反證法,正確掌握反證法的解題方法是解題關鍵.16、1【解析】圓錐的底面圓的半徑為r,利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形面積公式得到×1π×r×8=16π,解得r=1,然后解關于r的方程即可.【詳解】解:設圓錐的底面圓的半徑為r,根據(jù)題意得×1π×r×8=16π,解得r=1,所以圓錐的底面圓的半徑為1cm.故答案為1.【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.17、1【分析】將原方程進行配方,然后求解即可.【詳解】解:∴-m+1=nm+n=1故答案為:1【點睛】本題考查配方法,掌握配方步驟正確計算是本題的解題關鍵.18、2【解析】先根據(jù)拋物線解析式求出點坐標和其對稱軸,再根據(jù)對稱性求出點坐標,利用點為線段中點,得出點坐標;用含的式子表示出點坐標,寫出直線的解析式,再將點坐標代入即可求解出的值.【詳解】解:∵拋物線與軸交于點,∴,拋物線的對稱軸為∴頂點坐標為,點坐標為∵點為線段的中點,∴點坐標為設直線解析式為(為常數(shù),且)將點代入得∴將點代入得解得故答案為:2【點睛】考核知識點:拋物線與坐標軸交點問題.數(shù)形結合分析問題是關鍵.三、解答題(共66分)19、(1)詳見解析;共有8種等可能的結果;(2)【分析】此題分三步完成,每一個路口需要選擇一次,所以把每個路口看做一步,用樹狀圖表示所有情況,再利用概率公式求解.【詳解】(1)列樹狀圖如下:由樹狀圖可以看出,共有8種等可能的結果,即:紅紅紅、紅紅綠、紅綠紅、紅綠綠、綠紅紅、綠紅綠、綠綠紅、綠綠綠、(2)由(1)可知(三次紅燈).【點睛】此題考查的是用樹狀圖法求概率.樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、的圓周角所對的弦是直徑;同弧所對的圓周角相等,【分析】連接BC,則BC為直徑,根據(jù)圓周角定理,得到,再由30°所對直角邊等于斜邊的一半,即可得到答案.【詳解】解:如圖1,連接,,是⊙的直徑.(90°的圓周角所對的弦是直徑)且,,(同弧所對的圓周角相等),,.即⊙的半徑為1.故答案為:的圓周角所對的弦是直徑;同弧所對的圓周角相等;.【點睛】本題考查了圓周角定理,解題的關鍵是熟練掌握圓周角定理進行解題.21、(1)x1=7,x2=-1;(2)x1=2,x2=-1【分析】(1)根據(jù)配方法法即可求出答案.(2)根據(jù)直接開方法即可求出答案;【詳解】解:(1)x2-6x+1-1-7=0(x-3)2=16x-3=±4x1=7,x2=-1(2)2x-1=±32x=1±3x1=2,x2=-1【點睛】本題考查了解一元二次方程,觀察所給方程的形式,分別使用配方法和直接開方法求解.22、(1)見解析;(2)MN=2.【解析】(1)如圖,連接OD.欲證明直線CD是⊙O的切線,只需求得∠ODC=90°即可;(2)由角平分線及三角形外角性質可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根據(jù)勾股定理可求得MN的長.【詳解】(1)證明:如圖,連接OD.∵AB為⊙O的直徑,∴∠ADB=90°,即∠A+∠ABD=90°,又∵OD=OB,∴∠ABD=∠ODB,∵∠A=∠BDC;∴∠CDB+∠ODB=90°,即∠ODC=90°.∵OD是圓O的半徑,∴直線CD是⊙O的切線;(2)解:∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=2,∴DN=DM=2,∴MN==2.【點睛】本題主要考查切線的性質、圓周角定理、角平分線的性質及勾股定理,熟練掌握切線的性質:圓的切線垂直于過切點的半徑是解本題的關鍵.23、【解析】方程左邊分解因式后,利用兩數(shù)相乘積為1,兩因式中至少有一個為1轉化為兩個一元一次方程來求解.【詳解】分解因式得:(2x-3)(2x-1)=1,可得2x-3=1或2x-1=1,解得:x1=,x2=.【點睛】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關鍵.24、(1);(2)購進A產品6噸,購進B產品4噸,利潤之和最大,最大為6.6萬元【分析】(1)由拋物線過原點可設y與x間的函數(shù)關系式為y=ax2+bx+c,再利用待定系數(shù)法求解可得;

(2)設購進A產品m噸,購進B產品(10?m)噸,銷售A、B兩種產品獲得的利潤之和為W元,根據(jù):A產品利潤

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論