2023年廣西柳州市魚峰區(qū)第八中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第1頁
2023年廣西柳州市魚峰區(qū)第八中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第2頁
2023年廣西柳州市魚峰區(qū)第八中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第3頁
2023年廣西柳州市魚峰區(qū)第八中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第4頁
2023年廣西柳州市魚峰區(qū)第八中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年廣西柳州市魚峰區(qū)第八中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在Rt△ABC中,∠BAC=90o,AH是高,AM是中線,那么在結(jié)論①∠B=∠BAM,②∠B=∠MAH,③∠B=∠CAH中錯誤的個數(shù)有()A.0個 B.1個 C.2個 D.3個2.正五邊形內(nèi)接于圓,連接分別與交于點,,連接若,下列結(jié)論:①②③四邊形是菱形④;其中正確的個數(shù)為()A.個 B.個 C.個 D.個3.如圖,將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后得到△A'OB',若∠AOB=15°,則∠AOB'的度數(shù)是()A.25° B.30° C.35° D.40°4.如圖,小正方形的邊長均為1,則下列圖中的三角形(陰影部分)與相似的是()A. B. C. D.5.如圖,點O是五邊形ABCDE和五邊形A1B1C1D1E1的位似中心,若OA:OA1=1:3,則五邊形ABCDE和五邊形A1B1C1D1E1的面積比是()A.1:2 B.1:3 C.1:4 D.1:96.如圖,切于兩點,切于點,交于.若的周長為,則的值為()A. B. C. D.7.將方程x2-6x+3=0左邊配成完全平方式,得到的方程是(

)A.(x-3)2=-3

B.(x-3)2=6

C.(x-3)2=3

D.(x-3)2=128.如圖,線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)9.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F,若AC=3,AB=5,則CE的長為()A. B. C. D.10.如圖,已知為的直徑,點,在上,若,則()A. B. C. D.11.己知點都在反比例函數(shù)的圖象上,則()A. B. C. D.12.一枚質(zhì)地均勻的骰子,它的六個面上分別有1到6的點數(shù).下列事件中,是不可能事件的是()A.擲一次這枚骰子,向上一面的點數(shù)小于5B.擲一次這枚骰子,向上一面的點數(shù)等于5C.擲一次這枚骰子,向上一面的點數(shù)等于6D.擲一次這枚骰子,向上一面的點數(shù)大于6二、填空題(每題4分,共24分)13.如圖,⊙O的半徑為6,四邊形ABCD內(nèi)接于⊙O,連接OB,OD,若∠BOD=∠BCD,則弧BD的長為________.14.如圖,E,G,F(xiàn),H分別是矩形ABCD四條邊上的點,EF⊥GH,若AB=2,BC=3,則EF︰GH=.15.小芳的房間有一面積為3

m2的玻璃窗,她站在室內(nèi)離窗子4

m的地方向外看,她能看到窗前面一幢樓房的面積有____m2(樓之間的距離為20

m).16.二次函數(shù)y=2(x﹣1)2+3的圖象的頂點坐標是_________17.代數(shù)式a2+a+3的值為7,則代數(shù)式2a2+2a-3的值為________.18.分解因式:x2﹣2x=_____.三、解答題(共78分)19.(8分)如圖,直線y=x﹣1與拋物線y=﹣x2+6x﹣5相交于A、D兩點.拋物線的頂點為C,連結(jié)AC.(1)求A,D兩點的坐標;(2)點P為該拋物線上一動點(與點A、D不重合),連接PA、PD.①當點P的橫坐標為2時,求△PAD的面積;②當∠PDA=∠CAD時,直接寫出點P的坐標.20.(8分)在下列網(wǎng)格圖中,每個小正方形的邊長均為個單位中,,且三點均在格點上.(1)畫出繞順時針方向旋轉(zhuǎn)后的圖形;(2)求點運動路徑的長(結(jié)果保留).21.(8分)在平面直角坐標系xOy中,直線y=x+b(k≠0)與雙曲線一個交點為P(2,m),與x軸、y軸分別交于點A,B兩點.(1)求m的值;(2)求△ABO的面積;22.(10分)如圖,在平面直角坐標系中,正六邊形ABCDEF的對稱中心P在反比例函數(shù)的圖象上,邊CD在x軸上,點B在y軸上.已知.(1)點A是否在該反比例函數(shù)的圖象上?請說明理由.(2)若該反比例函數(shù)圖象與DE交于點Q,求點Q的橫坐標.(3)平移正六邊形ABCDEF,使其一邊的兩個端點恰好都落在該反比例函數(shù)的圖象上,試描述平移過程.23.(10分)某市有A、B、C三個公園,甲、乙兩位同學(xué)隨機選擇其中一個公園游玩.(1)甲去A公園游玩的概率是;(2)求甲、乙恰好在同一個公園游玩的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)24.(10分)三個小球上分別標有數(shù)字﹣2,﹣1,3,它們除數(shù)字外其余全部相同,現(xiàn)將它們放在一個不透明的袋子里,從袋子中隨機地摸出一球,將球上的數(shù)字記錄,記為m,然后放回;再隨機地摸取一球,將球上的數(shù)字記錄,記為n,這樣確定了點(m,n).(1)請列表或畫出樹狀圖,并根據(jù)列表或樹狀圖寫出點(m,n)所有可能的結(jié)果;(2)求點(m,n)在函數(shù)y=x的圖象上的概率.25.(12分)小琴和小江參加學(xué)校舉行的“經(jīng)典誦讀"比賽活動,誦讀材料有《論語》,《三字經(jīng)》,《弟子規(guī)》(分別用字母依次表示這三個誦讀材料),將這三個字母分別寫在張完全相同的不透明卡片的正面上,把這張卡片背面朝上洗勻后放在桌面上,比賽時小琴先從中隨機抽取一張卡片,記錄下卡精上的內(nèi)容,放回后洗勻,再由小江從中隨機抽取一張卡片,選手按各自抽取的卡片上的內(nèi)容進行誦讀比賽.小琴誦讀《論語》的概率是.請用列表法或畫樹狀圖(樹形圖)法求小琴和小江誦讀兩個不同材料的概率.26.如圖,AB是⊙O的直徑,CD切⊙O于點C,BE⊥CD于E,連接AC,BC.(1)求證:BC平分∠ABE;(2)若⊙O的半徑為3,cosA=,求CE的長.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)直角三角形斜邊上的中線性質(zhì)和等腰三角形的性質(zhì)得出∠B=∠BAM,根據(jù)已知條件判斷∠B=∠MAH不一定成立;根據(jù)三角形的內(nèi)角和定理及余角的性質(zhì)得出∠B=∠CAH.【詳解】①∵在Rt△ABC中,∠BAC=90°,AH是高,AM是中線,∴AM=BM,∴∠B=∠BAM,①正確;②∵∠B=∠BAM,不能判定AM平分∠BAH,∴∠B=∠MAH不一定成立,②錯誤;③∵∠BAC=90°,AH是高,∴∠B+∠BAH=90°,∠CAH+∠BAH=90°,∴∠B=∠CAH,③正確.故選:B.【點睛】本題主要考查對直角三角形斜邊上的中線性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)等知識點的理解和掌握,能根據(jù)這些性質(zhì)進行推理是解此題的關(guān)鍵.2、B【分析】①先根據(jù)正五方形ABCDE的性質(zhì)求得∠ABC,由等邊對等角可求得:∠BAC=∠ACB=36°,再利用角相等求BC=CF=CD,求得∠CDF=∠CFD,即可求得答案;②證明△ABF∽△ACB,得,代入可得BF的長;③先證明CF∥DE且,證明四邊形CDEF是平行四邊形,再由證得答案;④根據(jù)平行四邊形的面積公式可得:,即可求得答案.【詳解】①∵五方形ABCDE是正五邊形,,

∴,

∴,

∴,

同理得:,

∵,,

∴,

∵,∴,∴,則,

∴,

∵,

∴,

∴,

∴;

所以①正確;②∵∠ABE=∠ACB=36°,∠BAF=∠CAB,

∴△ABF∽△ACB,

∴,∵,∴,∵,∴,∴,解得:(負值已舍);所以②正確;③∵,,

∴,

∴CF∥DE,

∵,

∴四邊形CDEF是平行四邊形,∵,∴四邊形CDEF是菱形,所以③正確;④如圖,過D作DM⊥EG于M,

同①的方法可得,,

∴,,∴,所以④錯誤;綜上,①②③正確,共3個,故選:B【點睛】本題考查了相似三角形的判定和性質(zhì),勾股定理,圓內(nèi)接正五邊形的性質(zhì)、平行四邊形和菱形的判定和性質(zhì),有難度,熟練掌握圓內(nèi)接正五邊形的性質(zhì)是解題的關(guān)鍵.3、B【詳解】∵將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°,故選B.4、B【分析】求出△ABC的三邊長,再分別求出選項A、B、C、D中各三角形的三邊長,根據(jù)三組對應(yīng)邊的比相等判定兩個三角形相似,由此得到答案.【詳解】如圖,,AC=2,,A、三邊依次為:,,1,∵,∴A選項中的三角形與不相似;B、三邊依次為:、、1,∵,∴B選項中的三角形與相似;C、三邊依次為:3、、,∵,∴C選項中的三角形與不相似;D、三邊依次為:、、2,∵,∴D選項中的三角形與不相似;故選:B.【點睛】此題考查網(wǎng)格中三角形相似的判定,勾股定理,需根據(jù)勾股定理分別求每個三角形的邊長,判斷對應(yīng)邊的比是否相等是解題的關(guān)鍵.5、D【分析】由點O是五邊形ABCDE和五邊形A1B1C1D1E1的位似中心,OA:OA1=1:3,可得位似比為1:3,根據(jù)相似圖形的面積比等于相似比的平方,即可求得答案.【詳解】∵點O是五邊形ABCDE和五邊形A1B1C1D1E1的位似中心,OA:OA1=1:3,∴五邊形ABCDE和五邊形A1B1C1D1E1的位似比為1:3,∴五邊形ABCDE和五邊形A1B1C1D1E1的面積比是1:1.故選:D.【點睛】此題考查了位似圖形的性質(zhì).此題比較簡單,注意相似圖形的周長的比等于相似比,相似圖形的面積比等于相似比的平方.6、A【分析】利用切線長定理得出,然后再根據(jù)的周長即可求出PA的長.【詳解】∵切于兩點,切于點,交于∴的周長為∴故選:A.【點睛】本題主要考查切線長定理,掌握切線長定理是解題的關(guān)鍵.7、B【解析】試題分析:移項,得x2-1x=-3,等式兩邊同時加上一次項系數(shù)一半的平方(-3)2,得x2-1x+(-3)2=-3+(-3)2,即(x-3)2=1.故選B.點睛:配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.8、C【解析】直接利用位似圖形的性質(zhì)得出對應(yīng)點坐標乘以得出即可.【詳解】解:∵線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴端點的坐標為:(2,2),(3,1).故選C.【點睛】本題考查位似變換;坐標與圖形性質(zhì),數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.9、A【分析】根據(jù)三角形的內(nèi)角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線和對頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】過點F作FG⊥AB于點G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長為.故選A.【點睛】本題考查了直角三角形性質(zhì)、等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理以及相似三角形的判定與性質(zhì)等知識,關(guān)鍵是推出∠CEF=∠CFE.10、C【分析】連接AD,根據(jù)同弧所對的圓周角相等,求∠BAD的度數(shù),再根據(jù)直徑所對的圓周角是90°,利用內(nèi)角和求解.【詳解】解:連接AD,則∠BAD=∠BCD=28°,∵AB是直徑,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故選:C.【點睛】本題考查圓周角定理,運用圓周角定理是解決圓中角問題的重要途徑,直徑所對的圓周角是90°是圓中構(gòu)造90°角的重要手段.11、D【解析】試題解析:∵點A(1,y1)、B(1,y1)、C(-3,y3)都在反比例函數(shù)y=的圖象上,∴y1=-;y1=-1;y3=,

∵>->-1,

∴y3>y1>y1.

故選D.12、D【分析】事先能肯定它一定不會發(fā)生的事件稱為不可能事件,據(jù)此進行判斷即可.【詳解】解:A.擲一次這枚骰子,向上一面的點數(shù)小于5,屬于隨機事件,不合題意;B.擲一次這枚骰子,向上一面的點數(shù)等于5,屬于隨機事件,不合題意;C.擲一次這枚骰子,向上一面的點數(shù)等于6,屬于隨機事件,不合題意;D.擲一次這枚骰子,向上一面的點數(shù)大于6,屬于不可能事件,符合題意;故選:D.【點睛】本題考查的知識點是不可能事件的定義,比較基礎(chǔ),易于掌握.二、填空題(每題4分,共24分)13、4π【解析】根據(jù)圓內(nèi)接四邊形對角互補可得∠BCD+∠A=180°,再根據(jù)同弧所對的圓周角與圓心角的關(guān)系以及∠BOD=∠BCD,可求得∠A=60°,從而得∠BOD=120°,再利用弧長公式進行計算即可得.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的長=,故答案為4π.【點睛】本題考查了圓周角定理、弧長公式等,求得∠A的度數(shù)是解題的關(guān)鍵.14、3:2.【詳解】解:

過F作FM⊥AB于M,過H作HN⊥BC于N,

則∠4=∠5=90°=∠AMF

∵四邊形ABCD是矩形,

∴AD∥BC,AB∥CD,∠A=∠D=90°=∠AMF,

∴四邊形AMFD是矩形,

∴FM∥AD,F(xiàn)M=AD=BC=3,

同理HN=AB=2,HN∥AB,

∴∠2=∠2,

∵HG⊥EF,

∴∠HOE=90°,

∴∠2+∠GHN=90°,

∵∠3+∠GHN=90°,

∴∠2=∠3=∠2,

即∠2=∠3,∠4=∠5,

∴△FME∽△HNG,∴EF:GH=AD:CD=3:2.

故答案為:3:2.考點:2.相似三角形的判定與性質(zhì);2.矩形的性質(zhì).15、108【解析】考點:平行投影;相似三角形的應(yīng)用.分析:在不同時刻,同一物體的影子的方向和大小可能不同,不同時刻物體在太陽光下的影子的大小在變,方向也在改變,依此進行分析.解答:解:根據(jù)題意:她能看到窗前面一幢樓房的圖形與玻璃窗的外形應(yīng)該相似,且相似比為=6,故面積的比為36;故她能看到窗前面一幢樓房的面積有36×3=108m1.點評:本題考查了平行投影、視點、視線、位似變換、相似三角形對應(yīng)高的比等于相似比等知識點.注意平行投影特點:在同一時刻,不同物體的物高和影長成比例16、(1,3)【解析】首先知二次函數(shù)的頂點坐標根據(jù)頂點式y(tǒng)=a(x+)2+,知頂點坐標是(-,),把已知代入就可求出頂點坐標.【詳解】解:y=ax2+bx+c,配方得y=a(x+)2+,頂點坐標是(-,),∵y=2(x-1)2+3,∴二次函數(shù)y=2(x-1)2+3的圖象的頂點坐標是(1,3).【點睛】解此題的關(guān)鍵是知二次函數(shù)y=ax2+bx+c的頂點坐標是(-,),和轉(zhuǎn)化形式y(tǒng)=a(x+)2+,代入即可.17、3【分析】先求得a2+a=1,然后依據(jù)等式的性質(zhì)求得2a3+2a=2,然后再整體代入即可.【詳解】∵代數(shù)式a2+a+3的值為7,∴a2+a=1.∴2a3+2a=2.∴2a3+2a-3=2-3=3.故答案為3.【點睛】本題主要考查的是求代數(shù)式的值,整體代入是解題的關(guān)鍵.18、x(x﹣2)【分析】提取公因式x,整理即可.【詳解】解:x2﹣2x=x(x﹣2).故答案為:x(x﹣2).【點睛】本題考查了提公因式法分解因式,因式分解的第一步:有公因式的首先提取公因式.三、解答題(共78分)19、(1)A(1,0),D(4,3);(2)①當點P的橫坐標為2時,求△PAD的面積;②當∠PDA=∠CAD時,直接寫出點P的坐標.【分析】(1)由于A、D是直線直線y=x﹣1與拋物線y=﹣x2+6x﹣5的交點,要求兩個交點的坐標,需可聯(lián)立方程組求解;(2)①要求△PAD的面積,可以過P作PE⊥x軸,與AD相交于點E,求得PE,再用△PAE和△PDE的面積和求得結(jié)果;②分兩種情況解答:過D點作DP∥AC,與拋物線交于點P,求出AC的解析式,進而得PD的解析式,再解PD的解析式與拋物線的解析式聯(lián)立方程組,便可求得P點坐標;當P點在AD上方時,延長DP與y軸交于F點,過F點作FG∥AC與AD交于點G,則∠CAD=∠FGD=∠PDA,則FG=FD,設(shè)F點坐標為(0,m),求出G點的坐標(用m表示),再由FG=FD,列出m的方程,便可求得F點坐標,從而求出DF的解析式,最后解DF的解析式與拋物線的解析式聯(lián)立的方程組,便可求得P點坐標.【詳解】(1)聯(lián)立方程組,解得,,,∴A(1,0),D(4,3),(2)①過P作PE⊥x軸,與AD相交于點E,∵點P的橫坐標為2,∴P(2,3),E(2,1),∴PE=3﹣1=2,∴=3;②過點D作DP∥AC,與拋物線交于點P,則∠PDA=∠CAD,∵y=-x2+6x-5=-(x-3)2+4,∴C(3,4),設(shè)AC的解析式為:y=kx+b(k≠0),∵A(1,0),∴,∴,∴AC的解析式為:y=2x-2,設(shè)DP的解析式為:y=2x+n,把D(4,3)代入,得3=8+n,∴n=-5,∴DP的解析式為:y=2x-5,聯(lián)立方程組,解得,,,∴此時P(0,-5),當P點在直線AD上方時,延長DP,與y軸交于點F,過F作FG∥AC,F(xiàn)G與AD交于點G,則∠FGD=∠CAD=∠PDA,∴FG=FD,設(shè)F(0,m),∵AC的解析式為:y=2x-2,∴FG的解析式為:y=2x+m,聯(lián)立方程組,解得,,∴G(-m-1,-m-2),∴FG=,F(xiàn)D=,∵FG=FD,∴=,∴m=-5或1,∵F在AD上方,∴m>-1,∴m=1,∴F(0,1),設(shè)DF的解析式為:y=qx+1(q≠0),把D(4,3)代入,得4q+1=3,∴q=,∴DF的解析式為:y=x+1,聯(lián)立方程組∴,,∴此時P點的坐標為(,),綜上,P點的坐標為(0,-5)或(,).【點睛】本題是一次函數(shù)、二次函數(shù)、三角形的綜合題,主要考查了一次函數(shù)的性質(zhì),二次函數(shù)的圖象與性質(zhì),三角形的面積計算,平行線的性質(zhì),待定系數(shù)法,難度較大,第(2)小題,關(guān)鍵過P作x軸垂線,將所求三角形的面積轉(zhuǎn)化成兩個三角形的面積和進行解答;第(3)小題,分兩種情況解答,不能漏解,考慮問題要全面.20、(1)見解析;(2)【解析】(1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫圖;(2)點C的運動路徑是弧形,找到半徑,圓心角即可求解.【詳解】解:如圖所示,即為所求;,∴點C的運動路徑是以A為圓心,AC長為半徑的弧,點的運動路徑的長為:【點睛】本題考查了網(wǎng)格中圖形的旋轉(zhuǎn)及旋轉(zhuǎn)軌跡,還考查了弧長公式的運算.21、(1)m=4,(1)△ABO的面積為1.【分析】(1)將點P的坐標代入雙曲線即可求得m的值;(1)將點P代入直線,先求出直線的解析式,進而得出點A、B的坐標,從而得出△ABO的面積.【詳解】(1)∵點P(1,m)在雙曲線上∴m=解得:m=4(1)∴P(1,4),代入直線得:4=1+b,解得:b=1,故直線解析式為y=x+1A,B兩點時直線與坐標軸交點,圖形如下:則A(-1,0),B(0,1)∴.【點睛】本題考查一次函數(shù)與反比例函數(shù)的綜合,注意提干中告知點P是雙曲線與直線的交點,即代表點P即在雙曲線上,也在直線上.22、(1)點A在該反比例函數(shù)的圖像上,見解析;(2)Q的橫坐標是;(3)見解析.【分析】(1)連接PC,過點P作軸于點H,由此可求得點P的坐標為(2,);即可求得反比例函數(shù)的解析式為,連接AC,過點B作于點C,求得點A的坐標,由此即可判定點A是否在該反比例函數(shù)的圖象上;(2)過點Q作軸于點M,設(shè),則,由此可得點Q的坐標為,根據(jù)反比例函數(shù)圖象上點的性質(zhì)可得,解方程球隊的b值,即可求得點Q的橫坐標;(3)連接AP,,,結(jié)合(1)中的條件,將正六邊形ABCDEF先向右平移1個單位,再向上平移個單位(平移后的點B、C在反比例函數(shù)的圖象上)或?qū)⒄呅蜛BCDEF向左平移2個單位(平移后的點E、F在反比例函數(shù)的圖象上).【詳解】解:(1)連接PC,過點P作軸于點H,在正六邊形ABCDEF中,點B在y軸上和都是含有角的直角三角形,,點P的坐標為反比例函數(shù)的表達式為連接AC,過點B作于點C,,點A的坐標為當時,所以點A在該反比例函數(shù)的圖像上(2)過點Q作軸于點M六邊形ABCDEF是正六邊形,設(shè),則點Q的坐標為解得,點Q的橫坐標是(3)連接AP,,平移過程:將正六邊形ABCDEF先向右平移1個單位,再向上平移個單位,或?qū)⒄呅蜛BCDEF向左平移2個單位【點睛】本題考查反比例函數(shù)的圖象及性質(zhì),正六邊形的性質(zhì);將正六邊形的邊角關(guān)系與反比例函數(shù)上點的坐標相結(jié)合是解決問題的關(guān)系.23、(1);(2)【分析】(1)直接根據(jù)概率公式計算可得;(2)利用列舉方法找出所有的可能情況,再找兩位同學(xué)恰好在同一個公園游玩的情況個數(shù),即可求出所求的概率.【詳解】解:(1)甲去A公園游玩的概率為;故答案為:.(2)列樹狀圖如下:共有9種等可能結(jié)果,其中甲、乙恰好在同一個公園游玩的有3種,∴其概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果,再從中選出符合事件的結(jié)果數(shù)目,然后利用概率公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論