2023年河南省重點中學(xué)數(shù)學(xué)九上期末達(dá)標(biāo)測試試題含解析_第1頁
2023年河南省重點中學(xué)數(shù)學(xué)九上期末達(dá)標(biāo)測試試題含解析_第2頁
2023年河南省重點中學(xué)數(shù)學(xué)九上期末達(dá)標(biāo)測試試題含解析_第3頁
2023年河南省重點中學(xué)數(shù)學(xué)九上期末達(dá)標(biāo)測試試題含解析_第4頁
2023年河南省重點中學(xué)數(shù)學(xué)九上期末達(dá)標(biāo)測試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年河南省重點中學(xué)數(shù)學(xué)九上期末達(dá)標(biāo)測試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,以點O為位似中心,將△ABC放大得到△DEF,若AD=OA,則△ABC與△DEF的面積之比為()A.1:2 B.1:4 C.1:5 D.1:62.以下列長度的線段為邊,可以作一個三角形的是()A. B. C. D.3.如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,若∠BAC=20°,則∠ADC的度數(shù)是()A.90° B.100° C.110° D.130°4.如圖,直線////,若AB=6,BC=9,EF=6,則DE=()A.4 B.6 C.7 D.95.某校學(xué)生小明每天騎自行車上學(xué)時都要經(jīng)過一個十字路口,設(shè)十字路口有紅、黃、綠三色交通信號燈,他在路口遇到紅燈的概率為,遇到黃燈的概率為,那么他遇到綠燈的概率為().A. B. C. D.6.如圖,的半徑為5,的內(nèi)接于,若,則的值為()A. B. C. D.7.在單詞probability(概率)中任意選擇一個字母,選中字母“i”的概率是()A. B. C. D.8.如圖,AD是⊙O的直徑,以A為圓心,弦AB為半徑畫弧交⊙O于點C,連結(jié)BC交AD于點E,若DE=3,BC=8,則⊙O的半徑長為()A. B.5 C. D.9.已知正比例函數(shù)y=ax與反比例函數(shù)在同一坐標(biāo)系中的圖象如圖,判斷二次函數(shù)y=ax2+k在坐系中的大致圖象是()A. B.C. D.10.已知一個菱形的周長是,兩條對角線長的比是,則這個菱形的面積是()A. B. C. D.二、填空題(每小題3分,共24分)11.在一個不透明的盒子中裝有8個白球,若干個黃球,它們除顏色不同外,其余均相同.若從中隨機(jī)摸出一個球,它是白球的概率為,則黃球的個數(shù)為______.12.拋物線y=x2+2x﹣3的對稱軸是_____.13.已知△ABC與△DEF相似,相似比為2:3,如果△ABC的面積為4,則△DEF的面積為_____.14.如圖,點是圓周上異于的一點,若,則_____.15.Rt△ABC中,∠ABC=90°,AB=3,BC=4,過點B的直線把△ABC分割成兩個三角形,使其中只有一個是等腰三角形,則這個等腰三角形的面積是_____.16.如圖,在ABCD中,點E是AD邊上一點,AE:ED=1:2,連接AC、BE交于點F.若S△AEF=1,則S四邊形CDEF=_______.17.一元二次方程的兩個實數(shù)根為,則=_____.18.已知線段c是線段、的比例中項,且,,則線段c的長度為______.三、解答題(共66分)19.(10分)某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.(1)求一次函數(shù)的表達(dá)式;(2)若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?(3)若該商場獲得利潤不低于500元,試確定銷售單價的范圍.20.(6分)用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋海?)(x﹣2)2﹣16=1(2)5x2+2x﹣1=1.21.(6分)尺規(guī)作圖:如圖,已知正方形ABCD,E在BC邊上,求作AE上一點P,使△ABE∽△DPA(不寫過程,保留作圖痕跡).22.(8分)某種蔬菜的售價(元)與銷售月份之間的關(guān)系如圖所示,成本(元)與銷售月份之間的關(guān)系如圖所示.(圖的圖象是線段,圖的圖象是拋物線)(1)已知6月份這種蔬菜的成本最低,此時出售每千克的利潤是多少元?(利潤=售價成本)(2)設(shè)每千克該蔬菜銷售利潤為,請列出與之間的函數(shù)關(guān)系式,并求出哪個月出售這種蔬菜每千克的利潤最大,最大利潤是多少?(3)已知市場部銷售該種蔬菜4、5兩個月的總利潤為22萬元,且5月份的銷售量比4月份的銷售量多2萬千克.4、5兩個月的銷售量分別是多少萬千克?23.(8分)已知關(guān)于的一元二次方程:.(1)求證:對于任意實數(shù),方程都有實數(shù)根;(2)當(dāng)為何值時,方程的兩個根互為相反數(shù)?請說明理由.24.(8分)如圖,AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E,連接BD.(1)求證:DE是⊙O的切線;(2)若BD=3,AD=4,則DE=.25.(10分)如圖,在正方形中,是對角線上的一個動點,連接,過點作交于點.(1)如圖①,求證:;(2)如圖②,連接為的中點,的延長線交邊于點,當(dāng)時,求和的長;(3)如圖③,過點作于,當(dāng)時,求的面積.26.(10分)如圖,AC為圓O的直徑,弦AD的延長線與過點C的切線交于點B,E為BC中點,AC=,BC=4.(1)求證:DE為圓O的切線;(2)求陰影部分面積.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】試題分析:利用位似圖形的性質(zhì)首先得出位似比,進(jìn)而得出面積比.∵以點O為位似中心,將△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC與△DEF的面積之比為:1:1.故選B.考點:位似變換.2、B【分析】根據(jù)三角形的三邊關(guān)系定理逐項判斷即可.【詳解】A、,不滿足三角形的三邊關(guān)系定理,此項不符題意B、,滿足三角形的三邊關(guān)系定理,此項符合題意C、,不滿足三角形的三邊關(guān)系定理,此項不符題意D、,不滿足三角形的三邊關(guān)系定理,此項不符題意故選:B.【點睛】本題考查了三角形的三邊關(guān)系定理:任意兩邊之和大于第三邊,熟記定理是解題關(guān)鍵.3、C【解析】根據(jù)三角形內(nèi)角和定理以及圓內(nèi)接四邊形的性質(zhì)即可解決問題;【詳解】解:∵AB是直徑,

∴∠ACB=90°,

∵∠BAC=20°,

∴∠B=90°-20°=70°,

∵∠ADC+∠B=180°,

∴∠ADC=110°,

故選C.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì)、三角形的內(nèi)角和定理、圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識.4、A【分析】根據(jù)平行線分線段成比例定理列出比例式,代入數(shù)值進(jìn)行計算即可.【詳解】解:∵////,∴,∵AB=6,BC=9,EF=6,∴,∴DE=4故選:A【點睛】本題考查平行線分線段成比例定理,找準(zhǔn)對應(yīng)關(guān)系是解答此題的關(guān)鍵.5、D【分析】利用十字路口有紅、黃、綠三色交通信號燈,遇到每種信號燈的概率之和為1,進(jìn)而求出即可.【詳解】解:∵十字路口有紅、黃、綠三色交通信號燈,他在路口遇到紅燈的概率為,遇到黃燈的概率為,∴他遇到綠燈的概率為:1??=.故選D.【點睛】此題主要考查了概率公式,得出遇到每種信號燈的概率之和為1是解題關(guān)鍵.6、C【分析】連接OA、OB,作OH⊥AB,利用垂徑定理和勾股定理求出OH的長,再根據(jù)圓周角定理求出∠ACB=∠AOH,即可利用等角的余弦值相等求得結(jié)果.【詳解】如圖,連接OA、OB,作OH⊥AB,∵AB=8,OH⊥AB,∴AH=AB=4,∠AOB=2∠AOH,∵OA=5,∴OH=,∵∠AOB=2∠ACB,∴∠ACB=∠AOH,∴=cos∠AOH=,故選:C.【點睛】此題考查圓的性質(zhì),垂徑定理,勾股定理,三角函數(shù),圓周角定理,利用圓周角定理求得∠ACB=∠AOH,由此利用等角的函數(shù)值相等解決問題.7、A【解析】字母“i”出現(xiàn)的次數(shù)占字母總個數(shù)的比即為選中字母“i”的概率.【詳解】解:共有11個字母,每個字母出現(xiàn)的可能性是相同的,字母i出現(xiàn)兩次,其概率為.故選:A.【點睛】本題考查簡單事件的概率,利用概率公式求解是解答此題的關(guān)鍵.8、A【分析】由作法得,根據(jù)圓周角定理得到∠ADB=∠ABE,再根據(jù)垂徑定理的推論得到AD⊥BC,BE=CE=BC=4,于是可判斷Rt△ABE∽Rt△BDE,然后利用相似比求出AE,從而得到圓的直徑和半徑.【詳解】解:由作法得AC=AB,∴,∴∠ADB=∠ABE,∵AB為直徑,∴AD⊥BC,∴BE=CE=BC=4,∠BEA=∠BED=90°,而∠BDE=∠ABE,∴Rt△ABE∽Rt△BDE,∴BE:DE=AE:BE,即4:3=AE:4,∴AE=,∴AD=AE+DE=+3=,∴⊙O的半徑長為.故選:A.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形,靈活運用相似三角形的性質(zhì)表示線段之間的關(guān)系.也考查了圓周角定理.9、B【解析】根據(jù)正比例函數(shù)y=ax與反比例函數(shù)y=的函數(shù)圖象可知:a<0,k>0,然后根據(jù)二次函數(shù)圖象的性質(zhì)即可得出答案.【詳解】正比例函數(shù)y=ax與反比例函數(shù)y=的函數(shù)圖象可知:a<0,k>0,

則二次函數(shù)y=ax2+k的圖象開口向下,且與y軸的交點在y軸的正半軸,

所以大致圖象為B圖象.

故選B.【點睛】本題考查了二次函數(shù)及正比例函數(shù)與反比例函數(shù)的圖象,屬于基礎(chǔ)題,關(guān)鍵是注意數(shù)形結(jié)合的思想解題.10、D【分析】首先可求出菱形的邊長,設(shè)菱形的兩對角線分別為8x,6x,由勾股定理求出x的值,從而可得兩條對角線的長,根據(jù)菱形的面積等于對角線乘積的一半列式計算即可求解.【詳解】解:∵菱形的邊長是20cm,∴菱形的邊長=20÷4=5cm,∵菱形的兩條對角線長的比是,∴設(shè)菱形的兩對角線分別為8x,6x,∵菱形的對角線互相平分,∴對角線的一半分別為4x,3x,由勾股定理得:,解得:x=1,∴菱形的兩對角線分別為8cm,6cm,∴菱形的面積=cm2,故選:D.【點睛】本題考查了菱形的性質(zhì)、勾股定理,主要理由菱形的對角線互相平分的性質(zhì),以及菱形的面積等于對角線乘積的一半.二、填空題(每小題3分,共24分)11、1【解析】首先設(shè)黃球的個數(shù)為x個,然后根據(jù)概率公式列方程即可求得答案.解:設(shè)黃球的個數(shù)為x個,根據(jù)題意得:=2/3解得:x=1.∴黃球的個數(shù)為1.12、x=﹣1【分析】直接利用二次函數(shù)對稱軸公式求出答案.【詳解】拋物線y=x2+2x﹣3的對稱軸是:直線x=﹣=﹣=﹣1.故答案為:直線x=﹣1.【點睛】此題主要考查了二次函數(shù)的性質(zhì),正確記憶二次函數(shù)對稱軸公式是解題關(guān)鍵.13、1【解析】由△ABC與△DEF的相似,它們的相似比是2:3,根據(jù)相似三角形的面積比等于相似比的平方,即可得它們的面積比是4:1,又由△ABC的面積為4,即可求得△DEF的面積.【詳解】∵△ABC與△DEF的相似,它們的相似比是2:3,

∴它們的面積比是4:1,

∵△ABC的面積為4,

∴△DEF的面積為:4×=1.

故答案為:1.【點睛】本題考查的知識點是相似三角形的性質(zhì),解題關(guān)鍵是掌握相似三角形的面積比等于相似比的平方定理.14、或【分析】根據(jù)題意,分為點B在優(yōu)弧和劣弧兩種可能進(jìn)行分析,由圓周角定理,即可得到答案.【詳解】解:當(dāng)點B在優(yōu)弧AC上時,有:∵∠AOC=140°,∴;當(dāng)點B在劣弧AC上時,有∵,∴,∴;故答案為:或.【點睛】本題考查了圓周角定理,以及圓內(nèi)接四邊形的性質(zhì),解題的關(guān)鍵是熟練掌握同弧所對的圓周角等于圓心角的一半.15、3.1或4.32或4.2【解析】在Rt△ABC中,通過解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面積即可.【詳解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB?BC=1.沿過點B的直線把△ABC分割成兩個三角形,使其中只有一個是等腰三角形,有三種情況:①當(dāng)AB=AP=3時,如圖1所示,S等腰△ABP=?S△ABC=×1=3.1;②當(dāng)AB=BP=3,且P在AC上時,如圖2所示,作△ABC的高BD,則BD=,∴AD=DP==1.2,∴AP=2AD=3.1,∴S等腰△ABP=?S△ABC=×1=4.32;③當(dāng)CB=CP=4時,如圖3所示,S等腰△BCP=?S△ABC=×1=4.2;綜上所述:等腰三角形的面積可能為3.1或4.32或4.2,故答案為3.1或4.32或4.2.【點睛】本題考查了勾股定理、等腰三角形的性質(zhì)以及三角形的面積,找出所有可能的分割方法,并求出剪出的等腰三角形的面積是解題的關(guān)鍵.16、11【分析】先根據(jù)平行四邊形的性質(zhì)易得,根據(jù)相似三角形的判定可得△AFE∽△CFB,再根據(jù)相似三角形的性質(zhì)得到△BFC的面積,,進(jìn)而得到△AFB的面積,即可得△ABC的面積,再根據(jù)平行四邊形的性質(zhì)即可得解.【詳解】解:∵AE:ED=1:2,∴AE:AD=1:3,∵AD=BC,∴AE:BC=1:3,∵AD∥BC,∴△AFE∽△CFB,∴,∴,∴S△BCF=9,∵,∴S△AFB=3,∴S△ACD=S△ABC=S△BCF+S△AFB=12,∴S四邊形CDEF=S△ACD﹣S△AEF=12﹣1=11.故答案為11.【點睛】本題主要考查相似三角形的判定與性質(zhì),平行四邊形的性質(zhì)等,解此題的關(guān)鍵在于熟練掌握其知識點.17、1【分析】直接根據(jù)一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解即可.【詳解】的兩個實數(shù)根為,,.故答案為1.【點睛】本題主要考查一元二次方程根與系數(shù)的關(guān)系,熟記根與系數(shù)的關(guān)系是解題的關(guān)鍵.18、6【解析】根據(jù)比例中項的概念結(jié)合比例的基本性質(zhì),得:比例中項的平方等于兩條線段的乘積.所以c2=4×9,解得c=±6(線段是正數(shù),負(fù)值舍去),故答案為6.三、解答題(共66分)19、解:(3)一次函數(shù)的表達(dá)式為(4)當(dāng)銷售單價定為4元時,商場可獲得最大利潤,最大利潤是893元(3)銷售單價的范圍是.【解析】(3)列出二元一次方程組解出k與b的值可求出一次函數(shù)的表達(dá)式.(4)依題意求出W與x的函數(shù)表達(dá)式可推出當(dāng)x=4時商場可獲得最大利潤.(3)由w=500推出x4﹣380x+7700=0解出x的值即可.【詳解】(3)根據(jù)題意得:,解得k=﹣3,b=3.所求一次函數(shù)的表達(dá)式為;(4)=,∵拋物線的開口向下,∴當(dāng)x<90時,W隨x的增大而增大,而銷售單價不低于成本單價,且獲利不得高于45%,即60≤x≤60×(3+45%),∴60≤x≤4,∴當(dāng)x=4時,W==893,∴當(dāng)銷售單價定為4元時,商場可獲得最大利潤,最大利潤是893元.(3)令w=500,解方程,解得,,又∵60≤x≤4,所以當(dāng)w≥500時,70≤x≤4.考點:3.二次函數(shù)的應(yīng)用;4.應(yīng)用題.20、(1)x1=-2,x2=6;(2)x1=,x2=【分析】(1)先移項,兩邊再開方,即可得出兩個一元一次方程,求出方程的解即可;(2)求出b2-4ac的值,代入公式求出即可.【詳解】(1)(x-2)2-16=1,(x-2)2=16,兩邊開方得:x-2=±4,解得:x1=-2,x2=6;(2)5x2+2x-1=1,b2-4ac=22+4×5×1=24,x=,∴x1=,x2=【點睛】本題考查了解一元二次方程的應(yīng)用,主要考查了學(xué)生的計算能力,題目是一道比較好的題目,難度適中.21、詳見解析【分析】過D點作DP⊥AE交AE于點P,利用相似三角形的判定解答即可.【詳解】作圖如下:解:∵DP⊥AE交AE于點P,四邊形ABCD是正方形

∴∠APD=∠ABE=∠BAD=90°,

∴∠BAE+∠PAD=90°,∠PAD+∠ADP=90°,

∴∠BAE=∠ADP,又∵∠APD=∠ABE

∴△DPA∽△ABE.【點睛】此題考查作圖-相似變換,關(guān)鍵是根據(jù)相似三角形的判定解答.22、(1)6月份出售這種蔬菜每千克的利潤是2元;(2)P=,5月份出售這種蔬菜,每千克的收益最大為元;(3)4月份的銷售量為40000千克,5月份的銷售量為60000千克.【分析】(1)找出x=6時,y1、y2的值,根據(jù)利潤=售價-成本進(jìn)行計算即可;(2)利用待定系數(shù)法分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式,然后根據(jù)P=y1-y2得到關(guān)于x的函數(shù)關(guān)系式,然后利用二次根式的性質(zhì)進(jìn)行求解即可;(3)求出當(dāng)x=4時,P的值,設(shè)4月份的銷售量為t千克,則5月份的銷售是為(t+20000)千克,根據(jù)總利潤=每千克利潤×銷售數(shù)量,即可得出關(guān)于t的方程,解方程即可求得答案.【詳解】(1)當(dāng)x=6時,y1=3,y2=1,∵y1-y2=3-1=2,∴6月份出售這種蔬菜每千克的利潤是2元;(2)設(shè)y1=mx+n,y2=a(x-6)2+1,將(3,5)、(6,3)分別代入y1=mx+n,得,解得:,∴;將(3,4)代入y2=a(x-6)2+1,得,4=a(3-6)2+1,解得:a=,∴,∴P==,∵,∴當(dāng)x=5時,P取最大值,最大值為,即5月份出售這種蔬菜,每千克的收益最大,最大值為元;(3)當(dāng)x=4時,P==2,設(shè)4月份的銷售量為t千克,則5月份的銷售量為(t+20000)千克,根據(jù)題意得:,解得:t=40000,∴t+20000=60000,答:4月份的銷售量為40000千克,5月份的銷售量為60000千克.【點睛】本題考查了一次函數(shù)的應(yīng)用,二次函數(shù)的應(yīng)用,涉及了待定系數(shù)法,二次函數(shù)的性質(zhì)等知識,綜合性較強,弄清題意,讀懂圖象,靈活運用相關(guān)知識是解題的關(guān)鍵.23、(1)見解析;(2)1,理由見解析.【解析】試題分析:(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,可得出△=(t﹣3)2≥0,由此可證出:對于任意實數(shù)t,方程都有實數(shù)根;(2)設(shè)方程的兩根分別為m、n,由方程的兩根為相反數(shù)結(jié)合根與系數(shù)的關(guān)系,即可得出m+n=t﹣1=0,解之即可得出結(jié)論.試題解析:(1)證明:在方程x2﹣(t﹣1)x+t﹣2=0中,△=[﹣(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2≥0,∴對于任意實數(shù)t,方程都有實數(shù)根;(2)解:設(shè)方程的兩根分別為m、n,∵方程的兩個根互為相反數(shù),∴m+n=t﹣1=0,解得:t=1.∴當(dāng)t=1時,方程的兩個根互為相反數(shù).考點:根與系數(shù)的關(guān)系;根的判別式.24、(1)見解析;(2)【分析】(1)連接OD,如圖,先證明OD∥AE,再利用DE⊥AE得到OD⊥DE,然后根據(jù)切線的判定定理得到結(jié)論;(2)證明△ABD∽△ADE,通過線段比例關(guān)系求出DE的長.【詳解】(1)證明:連接OD∵AD平分∠BAC∴∠BAD=∠DAC∵OA=OD∴∠BAD=∠ODA∴∠ODA=∠DAC∴OD∥AE∴∠ODE+∠E=180°∵DE⊥AE∴∠E=90°∴∠ODE=180°-∠E=180°-90°=90°,即OD⊥DE∵點D在⊙O上∴DE是⊙O的切線.(2)∵AB是⊙O的直徑,∴∠ADB=90°,∵AD平分∠BAC,∴∠BAD=∠DAE,在△ABD和△ADE中,,∴△ABD∽△ADE,∴,∵BD=3,AD=4,AB==5∴DE==.【點睛】本題考查了切線的判定定理,相似三角形的判定和性質(zhì),適當(dāng)畫出正確的輔助線是解題的關(guān)鍵.25、(1)見解析;(2);;(3)面積為.【分析】(1)過點M作MF⊥AB于F,作MG⊥BC于G,由正方形的性質(zhì)得出∠ABD=∠DBC=45°,由角平分線的性質(zhì)得出MF=MG,證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論