2023年江蘇省無錫市宜興和橋二中學(xué)數(shù)學(xué)九年級(jí)第一學(xué)期期末預(yù)測試題含解析_第1頁
2023年江蘇省無錫市宜興和橋二中學(xué)數(shù)學(xué)九年級(jí)第一學(xué)期期末預(yù)測試題含解析_第2頁
2023年江蘇省無錫市宜興和橋二中學(xué)數(shù)學(xué)九年級(jí)第一學(xué)期期末預(yù)測試題含解析_第3頁
2023年江蘇省無錫市宜興和橋二中學(xué)數(shù)學(xué)九年級(jí)第一學(xué)期期末預(yù)測試題含解析_第4頁
2023年江蘇省無錫市宜興和橋二中學(xué)數(shù)學(xué)九年級(jí)第一學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年江蘇省無錫市宜興和橋二中學(xué)數(shù)學(xué)九年級(jí)第一學(xué)期期末預(yù)測試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.反比例函數(shù)經(jīng)過點(diǎn)(1,),則的值為()A.3 B. C. D.2.某十字路口的交通信號(hào)燈每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當(dāng)你抬頭看信號(hào)燈時(shí),是黃燈的概率為()A. B. C. D.3.己知點(diǎn)都在反比例函數(shù)的圖象上,則()A. B. C. D.4.若將一個(gè)正方形的各邊長擴(kuò)大為原來的4倍,則這個(gè)正方形的面積擴(kuò)大為原來的()A.16倍 B.8倍 C.4倍 D.2倍5.用配方法解方程,下列變形正確的是()A. B. C. D.6.若關(guān)于的一元二次方程的一個(gè)根是,則的值是()A.2011 B.2015 C.2019 D.20207.某個(gè)幾何體的三視圖如圖所示,該幾何體是()A. B. C. D.8.已知拋物線,則下列說法正確的是()A.拋物線開口向下 B.拋物線的對(duì)稱軸是直線C.當(dāng)時(shí),的最大值為 D.拋物線與軸的交點(diǎn)為9.如圖等邊△ABC的邊長為4cm,點(diǎn)P,點(diǎn)Q同時(shí)從點(diǎn)A出發(fā)點(diǎn),Q沿AC以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)P沿A﹣B﹣C以2cm/s的速度也向點(diǎn)C運(yùn)動(dòng),直到到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),若△APQ的面積為S(cm2),點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t(s),則下列最能反映S與t之間大致圖象是()A. B.C. D.10.已知二次函數(shù)的圖象(0≤x≤4)如圖,關(guān)于該函數(shù)在所給自變量的取值范圍內(nèi),下列說法正確的是()A.有最大值1.5,有最小值﹣2.5 B.有最大值2,有最小值1.5C.有最大值2,有最小值﹣2.5 D.有最大值2,無最小值11.下列四個(gè)點(diǎn),在反比例函數(shù)y=圖象上的是(

)A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1)12.如圖,小穎身高為160cm,在陽光下影長AB=240cm,當(dāng)她走到距離墻角(點(diǎn)D)150cm處時(shí),她的部分影子投射到墻上,則投射在墻上的影子DE的長度為()A.50 B.60 C.70 D.80二、填空題(每題4分,共24分)13.如圖,將含有45°角的直角三角板ABC(∠C=90°)繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°得到△AB′C′,連接BB′,已知AC=2,則陰影部分面積為_____.14.二次函數(shù)的圖象如圖所示,給出下列說法:①;②方程的根為,;③;④當(dāng)時(shí),隨值的增大而增大;⑤當(dāng)時(shí),.其中,正確的說法有________(請(qǐng)寫出所有正確說法的序號(hào)).15.寫出一個(gè)圖象的頂點(diǎn)在原點(diǎn),開口向下的二次函數(shù)的表達(dá)式_____.16.在一個(gè)不透明的袋子中有1個(gè)紅球和3個(gè)白球,這些球除顏色外都相同,在袋子中再放入個(gè)白球后,從袋子中隨機(jī)摸出1個(gè)球,記錄下顏色后放回袋子中并攪勻,經(jīng)大量試驗(yàn),發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.95左右,則______.17.如圖,反比例函數(shù)y=(x>0)經(jīng)過A,B兩點(diǎn),過點(diǎn)A作AC⊥y軸于點(diǎn)C,過點(diǎn)B作BD⊥y軸于點(diǎn)D,過點(diǎn)B作BE⊥x軸于點(diǎn)E,連接AD,已知AC=1,BE=1,S△ACD=,則S矩形BDOE=______.18.如圖,反比例函數(shù)的圖像過點(diǎn),過點(diǎn)作軸于點(diǎn),直線垂直線段于點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好在反比例函數(shù)的圖象上,則的值是__________.三、解答題(共78分)19.(8分)綜合與探究:操作發(fā)現(xiàn):如圖1,在中,,以點(diǎn)為中心,把順時(shí)針旋轉(zhuǎn),得到;再以點(diǎn)為中心,把逆時(shí)針旋轉(zhuǎn),得到.連接.則與的位置關(guān)系為平行;探究證明:如圖2,當(dāng)是銳角三角形,時(shí),將按照(1)中的方式,以點(diǎn)為中心,把順時(shí)針旋轉(zhuǎn),得到;再以點(diǎn)為中心,把逆時(shí)針旋轉(zhuǎn),得到.連接,①探究與的位置關(guān)系,寫出你的探究結(jié)論,并加以證明;②探究與的位置關(guān)系,寫出你的探究結(jié)論,并加以證明.20.(8分)一次函數(shù)y=x+2與y=2x﹣m相交于點(diǎn)M(3,n),解不等式組,并將解集在數(shù)軸上表示出來.21.(8分)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(﹣2,0),B(0,﹣2),C(1,0)三點(diǎn).(1)求拋物線的解析式;(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=﹣x上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).22.(10分)在一個(gè)不透明的布袋里裝有4個(gè)標(biāo)有1,2,3,4的小球,它們的形狀、大小完全相同,小明從布袋里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,小紅在剩下的3個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字為y。(1)計(jì)算由x、y確定的點(diǎn)(x,y)在函數(shù)y=-x+5的圖象上的概率;(2)小明和小紅約定做一個(gè)游戲,其規(guī)則為:若x、y滿足xy>6則小明勝,若x、y滿足xy<6則小紅勝,這個(gè)游戲公平嗎?說明理由.若不公平,請(qǐng)寫出公平的游戲規(guī)則.23.(10分)在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A(0,﹣4)和B(2,0)兩點(diǎn).(1)求c的值及a,b滿足的關(guān)系式;(2)若拋物線在A和B兩點(diǎn)間,y隨x的增大而增大,求a的取值范圍;(3)拋物線同時(shí)經(jīng)過兩個(gè)不同的點(diǎn)M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,點(diǎn)M在直線y=﹣2x﹣3上,請(qǐng)驗(yàn)證點(diǎn)N也在y=﹣2x﹣3上并求a的值.24.(10分)如圖,⊙O過?ABCD的三頂點(diǎn)A、D、C,邊AB與⊙O相切于點(diǎn)A,邊BC與⊙O相交于點(diǎn)H,射線AD交邊CD于點(diǎn)E,交⊙O于點(diǎn)F,點(diǎn)P在射線AO上,且∠PCD=2∠DAF.(1)求證:△ABH是等腰三角形;(2)求證:直線PC是⊙O的切線;(3)若AB=2,AD=,求⊙O的半徑.25.(12分)如圖1,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于兩點(diǎn),點(diǎn)為拋物線的頂點(diǎn),為線段中點(diǎn).(1)求的值;(2)求證:;(3)以拋物線的頂點(diǎn)為圓心,為半徑作,點(diǎn)是圓上一動(dòng)點(diǎn),點(diǎn)為的中點(diǎn)(如圖2);①當(dāng)面積最大時(shí),求的長度;②若點(diǎn)為的中點(diǎn),求點(diǎn)運(yùn)動(dòng)的路徑長.

26.(1)計(jì)算:﹣|﹣3|+cos60°;(2)化簡:

參考答案一、選擇題(每題4分,共48分)1、B【解析】此題只需將點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式即可確定k的值.【詳解】把已知點(diǎn)的坐標(biāo)代入解析式可得,k=1×(-1)=-1.故選:B.【點(diǎn)睛】本題主要考查了用待定系數(shù)法求反比例函數(shù)的解析式,.2、A【解析】隨機(jī)事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù),據(jù)此用黃燈亮的時(shí)間除以三種燈亮的總時(shí)間,求出抬頭看信號(hào)燈時(shí),是黃燈的概率為多少.【詳解】根據(jù)題意可知,每分鐘內(nèi)黃燈亮的時(shí)間為秒,每分鐘內(nèi)黃燈亮的概率為,故抬頭看是黃燈的概率為.故選A.【點(diǎn)睛】本題主要考查求隨機(jī)事件概率的方法,熟悉掌握隨機(jī)事件A的概率公式是關(guān)鍵.3、D【解析】試題解析:∵點(diǎn)A(1,y1)、B(1,y1)、C(-3,y3)都在反比例函數(shù)y=的圖象上,∴y1=-;y1=-1;y3=,

∵>->-1,

∴y3>y1>y1.

故選D.4、A【分析】根據(jù)正方形的面積公式:s=a2,和積的變化規(guī)律,積擴(kuò)大的倍數(shù)等于因數(shù)擴(kuò)大倍數(shù)的乘積,由此解答.【詳解】解:根據(jù)正方形面積的計(jì)算方法和積的變化規(guī)律,如果一個(gè)正方形的邊長擴(kuò)大為原來的4倍,那么正方形的面積是原來正方形面積的4×4=16倍.故選A.【點(diǎn)睛】此題考查相似圖形問題,解答此題主要根據(jù)正方形的面積的計(jì)算方法和積的變化規(guī)律解決問題.5、D【解析】等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方,利用完全平方公式進(jìn)行整理即可.【詳解】解:原方程等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方得,,整理后得,,故選擇D.【點(diǎn)睛】本題考查了配方法的概念.6、C【分析】根據(jù)方程解的定義,求出a-b,利用作圖代入的思想即可解決問題.【詳解】∵關(guān)于x的一元二次方程的解是x=?1,∴a?b+4=0,∴a?b=-4,∴2015?(a?b)=2215?(-4)=2019.故選C.【點(diǎn)睛】此題考查一元二次方程的解,解題關(guān)鍵在于掌握運(yùn)算法則.7、D【解析】根據(jù)幾何體的三視圖判斷即可.【詳解】由三視圖可知:該幾何體為圓錐.故選D.【點(diǎn)睛】考查了由三視圖判斷幾何體的知識(shí),解題的關(guān)鍵是具有較強(qiáng)的空間想象能力,難度不大.8、D【分析】根據(jù)二次函數(shù)的性質(zhì)對(duì)A、B進(jìn)行判斷;根據(jù)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征對(duì)C進(jìn)行判斷;利用拋物線與軸交點(diǎn)坐標(biāo)對(duì)D進(jìn)行判斷.【詳解】A、a=1>0,則拋物線的開口向上,所以A選項(xiàng)錯(cuò)誤;B、拋物線的對(duì)稱軸為直線x=1,所以B選項(xiàng)錯(cuò)誤;C、當(dāng)x=1時(shí),有最小值為,所以C選項(xiàng)錯(cuò)誤;D、當(dāng)x=0時(shí),y=-3,故拋物線與軸的交點(diǎn)為,所以D選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),主要涉及開口方向,對(duì)稱軸,與y軸的交點(diǎn)坐標(biāo),最值問題,熟記二次函數(shù)的性質(zhì)是解題的關(guān)鍵.9、C【分析】根據(jù)等邊三角形的性質(zhì)可得,然后根據(jù)點(diǎn)P的位置分類討論,分別求出S與t的函數(shù)關(guān)系式即可得出結(jié)論.【詳解】解:∵△ABC為等邊三角形∴∠A=∠C=60°,AB=BC=AC=4當(dāng)點(diǎn)P在AB邊運(yùn)動(dòng)時(shí),根據(jù)題意可得AP=2t,AQ=t∴△APQ為直角三角形S=AQ×PQ=AQ×(AP·sinA)=×t×2t×=t2,圖象為開口向上的拋物線,當(dāng)點(diǎn)P在BC邊運(yùn)動(dòng)時(shí),如下圖,根據(jù)題意可得PC=2×4-2t=8-2t,AQ=tS=×AQ×PH=×AQ×(PC·sinC)=×t×(8﹣2t)×=t(4﹣t)=-t2+,圖象為開口向下的拋物線;故選:C.【點(diǎn)睛】此題考查的是根據(jù)動(dòng)點(diǎn)判定函數(shù)的圖象,掌握三角形面積的求法、二次函數(shù)的圖象及性質(zhì)和銳角三角函數(shù)是解決此題的關(guān)鍵.10、C【詳解】由圖像可知,當(dāng)x=1時(shí),y有最大值2;當(dāng)x=4時(shí),y有最小值-2.5.故選C.11、D【解析】由可得xy=6,故選D.12、B【分析】過E作EF⊥CG于F,利用相似三角形列出比例式求出投射在墻上的影子DE長度即可.【詳解】過E作EF⊥CG于F,設(shè)投射在墻上的影子DE長度為x,由題意得:△GFE∽△HAB,∴AB:FE=AH:(GC?x),則240:150=160:(160?x),解得:x=60.故選B.【點(diǎn)睛】本題考查相似三角形的判定與性質(zhì),解題突破口是過E作EF⊥CG于F.二、填空題(每題4分,共24分)13、1【分析】在Rt△ABC中,可求出AB的長度,再根據(jù)含30°的直角三角形的性質(zhì)得到AB邊上的高,最后由S陰影=S△ABB′結(jié)合三角形的面積公式即可得出結(jié)論.【詳解】過B′作B′D⊥AB于D,在Rt△ABC中,∠C=90°,∠ABC=45°,AC=1,∴AB′=AB=AC=,又∵∠ADB′=90°,∠BAB′=30°,∴B′D=AB′=,∴S陰影=S△ABC+S△ABB′?S△AB′C′=S△ABB′=××=1,故答案為:1.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等腰直角三角形的性質(zhì)以及含30°的直角三角形性質(zhì),解題的關(guān)鍵是得出S陰影=S△ABB′.14、①②④【分析】根據(jù)拋物線的對(duì)稱軸判斷①,根據(jù)拋物線與x軸的交點(diǎn)坐標(biāo)判斷②,根據(jù)函數(shù)圖象判斷③④⑤.【詳解】解:∵對(duì)稱軸是x=-=1,∴ab<0,①正確;∵二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)坐標(biāo)為(-1,0)、(3,0),∴方程x2+bx+c=0的根為x1=-1,x2=3,②正確;∵當(dāng)x=1時(shí),y<0,∴a+b+c<0,③錯(cuò)誤;由圖象可知,當(dāng)x>1時(shí),y隨x值的增大而增大,④正確;當(dāng)y>0時(shí),x<-1或x>3,⑤錯(cuò)誤,故答案為①②④.【點(diǎn)睛】本題考查的是二次函數(shù)圖象與系數(shù)之間的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸、拋物線與y軸的交點(diǎn)、拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.15、y=﹣2x2(答案不唯一)【分析】由題意知,圖象過原點(diǎn),開口向下則二次項(xiàng)系數(shù)為負(fù)數(shù),由此可寫出滿足條件的二次函數(shù)的表達(dá)式.【詳解】解:由題意可得:y=﹣2x2(答案不唯一).故答案為:y=﹣2x2(答案不唯一).【點(diǎn)睛】本題考查了二次函數(shù)的圖象和性質(zhì),掌握二次函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.16、1【分析】根據(jù)用頻率估計(jì)概率即可求出摸到白球的概率,然后利用概率公式列出方程即可求出x的值.【詳解】解:∵經(jīng)大量試驗(yàn),發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.95左右∴摸到白球的概率為0.95∴解得:1經(jīng)檢驗(yàn):1是原方程的解.故答案為:1.【點(diǎn)睛】此題考查的是用頻率估計(jì)概率和根據(jù)概率求數(shù)量問題,掌握概率公式是解決此題的關(guān)鍵.17、1【分析】根據(jù)三角形的面積求出CD,OC,進(jìn)而確定點(diǎn)A的坐標(biāo),代入求出k的值,矩形BDOE的面積就是|k|,得出答案.【詳解】∵AC=1,S△ACD=,∴CD=3,∵ODBE是矩形,BE=1,∴OD=1,OC=OD+CD=1,∴A(1,1)代入反比例函數(shù)關(guān)系式得,k=1,∴S矩形BDOE=|k|=1,故答案為:1.【點(diǎn)睛】本題考查了反比例函數(shù)的幾何問題,掌握反比例函數(shù)的性質(zhì)以及三角形的面積公式是解題的關(guān)鍵.18、【分析】設(shè)直線l與y軸交于點(diǎn)M,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),連接MB′,根據(jù)一次函數(shù)解析式確定∠PMO=45°及M點(diǎn)坐標(biāo),然后根據(jù)A點(diǎn)坐標(biāo)分析B點(diǎn)坐標(biāo),MB的長度,利用對(duì)稱性分析B′的坐標(biāo),利用待定系數(shù)法求反比例函數(shù)解析式,然后將B′坐標(biāo)代入解析式,從而求解.【詳解】解:直線l與y軸交于點(diǎn)M,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),連接MB′由直線中k=1可知直線l與x軸的夾角為45°,∴∠PMO=45°,M(0,b)由,過點(diǎn)作軸于點(diǎn)∴B(0,2),MB=b-2∴B′(2-b,b)把點(diǎn)代入中解得:k=-4∴∵恰好在反比例函數(shù)的圖象上把B′(2-b,b)代入中解得:(負(fù)值舍去)∴故答案為:【點(diǎn)睛】本題考查了待定系數(shù)法求反比例函數(shù)、正比例函數(shù)的解析式,軸對(duì)稱的性質(zhì),函數(shù)圖象上點(diǎn)的坐標(biāo)特征,用含b的代數(shù)式表示B′點(diǎn)坐標(biāo)是解題的關(guān)鍵.三、解答題(共78分)19、①,證明詳見解析;②,證明詳見解析.【分析】(1)根據(jù)旋轉(zhuǎn)角的定義即可得到,即可證得與的位置關(guān)系.(2)過點(diǎn)作,交于點(diǎn),證明四邊形為平行四邊形即可解決問題.【詳解】①.證明:由旋轉(zhuǎn)的性質(zhì),知.又,.②.證明:過點(diǎn)作,交于點(diǎn)..又由旋轉(zhuǎn)的性質(zhì)知,...又四邊形為平行四邊形..【點(diǎn)睛】本題考查旋轉(zhuǎn)變換,掌握旋轉(zhuǎn)的性質(zhì)及平行四邊形的判定和性質(zhì)是解題的關(guān)鍵.20、﹣1<x≤3,見解析【分析】根據(jù)已知條件得到2x﹣m≤x+2的解集為x≤3,求得不等式組的解集為﹣1<x≤3,把解集在數(shù)軸上表示即可.【詳解】解:∵一次函數(shù)y=x+2與y=2x﹣m相交于點(diǎn)M(3,n),∴2x﹣m≤x+2的解集為:x≤3,不等式x+1>0的解集為:x>﹣1,∴不等式組的解集為:﹣1<x≤3,把解集在數(shù)軸上表示為:【點(diǎn)睛】本題考查了一次函數(shù)與一元一次不等式,不等式組的解法,正確的理解題意是解題的關(guān)鍵.21、(2)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值為2;(3)點(diǎn)Q坐標(biāo)為:(﹣2,2)或(﹣2+,2﹣)或(﹣2﹣,2+)或(2,﹣2).【分析】(2)設(shè)此拋物線的函數(shù)解析式為:y=ax2+bx+c,將A,B,C三點(diǎn)代入y=ax2+bx+c,列方程組求出a、b、c的值即可得答案;(2)如圖2,過點(diǎn)M作y軸的平行線交AB于點(diǎn)D,M點(diǎn)的橫坐標(biāo)為m,且點(diǎn)M在第三象限的拋物線上,設(shè)M點(diǎn)的坐標(biāo)為(m,m2+m﹣2),﹣2<m<0,由A、B坐標(biāo)可求出直線AB的解析式為y=﹣x﹣2,則點(diǎn)D的坐標(biāo)為(m,﹣m﹣2),即可求出MD的長度,進(jìn)一步求出△MAB的面積S關(guān)于m的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)即可求出其最大值;(3)設(shè)P(x,x2+x﹣2),分情況討論,①當(dāng)OB為邊時(shí),根據(jù)平行四邊形的性質(zhì)知PQ∥OB,且PQ=OB,則Q(x,﹣x),可列出關(guān)于x的方程,即可求出點(diǎn)Q的坐標(biāo);②當(dāng)BO為對(duì)角線時(shí),OQ∥BP,A與P應(yīng)該重合,OP=2,四邊形PBQO為平行四邊形,則BQ=OP=2,Q橫坐標(biāo)為2,即可寫出點(diǎn)Q的坐標(biāo).【詳解】(2)設(shè)此拋物線的函數(shù)解析式為:y=ax2+bx+c,將A(﹣2,0),B(0,﹣2),C(2,0)三點(diǎn)代入,得,解得:,∴此函數(shù)解析式為:y=x2+x﹣2.(2)如圖,過點(diǎn)M作y軸的平行線交AB于點(diǎn)D,∵M(jìn)點(diǎn)的橫坐標(biāo)為m,且點(diǎn)M在第三象限的拋物線上,∴設(shè)M點(diǎn)的坐標(biāo)為(m,m2+m﹣2),﹣2<m<0,設(shè)直線AB的解析式為y=kx﹣2,把A(﹣2,0)代入得,-2k-2=0,解得:k=﹣2,∴直線AB的解析式為y=﹣x﹣2,∵M(jìn)D∥y軸,∴點(diǎn)D的坐標(biāo)為(m,﹣m﹣2),∴MD=﹣m﹣2﹣(m2+m﹣2)=﹣m2﹣2m,∴S△MAB=S△MDA+S△MDB=MD?OA=×2(m2﹣2m)=﹣m2﹣2m=﹣(m+2)2+2,∵﹣2<m<0,∴當(dāng)m=﹣2時(shí),S△MAB有最大值2,綜上所述,S關(guān)于m的函數(shù)關(guān)系式是S=﹣m2﹣2m(﹣2<m<0),S的最大值為2.(3)設(shè)P(x,x2+x﹣2),①如圖,當(dāng)OB為邊時(shí),根據(jù)平行四邊形的性質(zhì)知PQ∥OB,且PQ=OB,∴Q的橫坐標(biāo)等于P的橫坐標(biāo),∵直線的解析式為y=﹣x,則Q(x,﹣x),由PQ=OB,得|﹣x﹣(x2+x﹣2)|=2,即|﹣x2﹣2x+2|=2,當(dāng)﹣x2﹣2x+2=2時(shí),x2=0(不合題意,舍去),x2=﹣2,∴Q(﹣2,2),當(dāng)﹣x2﹣2x+2=﹣2時(shí),x2=﹣2+,x2=﹣2﹣,∴Q(﹣2+,2﹣)或(﹣2﹣,2+),②如圖,當(dāng)BO為對(duì)角線時(shí),OQ∥BP,∵直線AB的解析式為y=-x-2,直線OQ的解析式為y=-x,∴A與P重合,OP=2,四邊形PBQO為平行四邊形,∴BQ=OP=2,點(diǎn)Q的橫坐標(biāo)為2,把x=2代入y=﹣x得y=-2,∴Q(2,﹣2),綜上所述,點(diǎn)Q的坐標(biāo)為(﹣2,2)或(﹣2+,2﹣)或(﹣2﹣,2+)或(2,﹣2).【點(diǎn)睛】本題是對(duì)二次函數(shù)的綜合考查,有待定系數(shù)法求二次函數(shù)解析式,三角形的面積,二次函數(shù)的最值問題,平行四邊形的對(duì)邊相等的性質(zhì),平面直角坐標(biāo)系中兩點(diǎn)間的距離的表示,熟練掌握二次函數(shù)的性質(zhì)把運(yùn)用分類討論的思想是解題關(guān)鍵.22、(1)13;(2)不公平,規(guī)則見解析【解析】(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果,再得出得點(diǎn)(x,y)在函數(shù)y=-x+5的圖象上的情況,利用概率公式即可求得答案;

(2)首先分別求得x、y滿足xy>6則小明勝,x、y滿足xy<6則小紅勝的概率,比較概率大小,即可得這個(gè)游戲是否公平;公平的游戲規(guī)則:只要概率相等即可.【詳解】(1)畫樹狀圖得:∵共有12種等可能的結(jié)果,其中在函數(shù)y=?x+5的圖象上的有4種:(1,4),(2,3),(3,2),(4,1),∴點(diǎn)(x,y)在函數(shù)y=?x+5的圖象上的概率為:412(3)這個(gè)游戲不公平.理由:∵x、y滿足xy>6有:(2,4),(3,4),(4,2),(4,3)共4種情況,x、y滿足xy<6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6種情況.∴P(小明勝)=412=13,P(∴這個(gè)游戲不公平。公平的游戲規(guī)則為:若x、y滿足xy≥6則小明勝,若x、y滿足xy<6則小紅勝.【點(diǎn)睛】考查游戲公平性,一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,列表法與樹狀圖法,掌握概率=所求情況數(shù)與總情況數(shù)之比是解題的關(guān)鍵.23、(1)c=﹣4,2a+b=2;(2)0<a≤1;(3)①a=;②見解析,a=1.【分析】(1)令x=0,則c=?4,將點(diǎn)B(2,0)代入y=ax2+bx+c可得2a+b=2;(2)由已知可知拋物線開口向上,a>0,對(duì)稱軸x=﹣=﹣=1﹣≤0,即可求a的范圍;(3)①m=n時(shí),M(p,m),N(?2?p,n)關(guān)于對(duì)稱軸對(duì)稱,則有1?=?1;②將點(diǎn)N(?2?p,n)代入y=?2x?3等式成立,則可證明N點(diǎn)在直線上,再由直線與拋物線的兩個(gè)交點(diǎn)是M、N,則有根與系數(shù)的關(guān)系可得p+(?2?p)=,即可求a.【詳解】(1)令x=0,則c=﹣4,將點(diǎn)B(2,0)代入y=ax2+bx+c可得4a+2b﹣4=0,∴2a+b=2;(2)∵拋物線在A和B兩點(diǎn)間,y隨x的增大而增大,∴拋物線開口向上,∴a>0,∵A(0,﹣4)和B(2,0),∴對(duì)稱軸x=﹣=﹣=1﹣≤0,∴0<a≤1;(3)①當(dāng)m=n時(shí),M(p,m),N(﹣2﹣p,n)關(guān)于對(duì)稱軸對(duì)稱,∴對(duì)稱軸x=1﹣=﹣1,∴a=;②將點(diǎn)N(﹣2﹣p,n)代入y=﹣2x﹣3,∴n=4+2p﹣3=1+2p,∴N點(diǎn)在y=﹣2x﹣3上,聯(lián)立y=﹣2x﹣3與y=ax2+(2﹣2a)x﹣4有兩個(gè)不同的實(shí)數(shù)根,∴ax2+(4﹣2a)x﹣1=0,∵p+(﹣2﹣p)=-=,∴a=1.【點(diǎn)睛】本題考查二次函數(shù)的性質(zhì);熟練掌握二次函數(shù)的圖象及性質(zhì),能結(jié)合函數(shù)的對(duì)稱性、增減性、直線與拋物線的交點(diǎn)個(gè)數(shù)綜合解題是關(guān)鍵.24、(1)見解析;(2)見解析;(3).【解析】(1)要想證明△ABH是等腰三角形,只需要根據(jù)平行四邊形的性質(zhì)可得∠B=∠ADC,再根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ),可得∠ADC+∠AHC=180°,再根據(jù)鄰補(bǔ)角互補(bǔ),可知∠AHC+∠AHB=180°,從而可以得到∠ABH和∠AHB的關(guān)系,從而可以證明結(jié)論成立;(2)要證直線PC是⊙O的切線,只需要連接OC,證明∠OCP=90°即可,根據(jù)平行四邊形的性質(zhì)和邊AB與⊙O相切于點(diǎn)A,可以得到∠AEC的度數(shù),又∠PCD=2∠DAF,∠DOF=2∠DAF,∠COE=∠DOF,通過轉(zhuǎn)化可以得到∠OCP的度數(shù),從而可以證明結(jié)論;(3)根據(jù)題意和(1)(2)可以得到∠AED=90°,由平行四邊形的性質(zhì)和勾股定理,由AB=2,AD=,可以求得半徑的長.【詳解】(1)證明:∵四邊形ADCH是圓內(nèi)接四邊形,∴∠ADC+∠AHC=180°,又∵∠AHC+∠AHB=180°,∴∠ADC=∠AHB,∵四邊形ABCD是平行四邊形,∴∠ADC=∠B,∴∠AHB=∠B,∴AB=AH,∴△ABH是等腰三角形;(2)證明:連接OC,如右圖所示,∵邊AB與⊙O相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論