2024屆江蘇省常州市奔牛高級中學(xué)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第1頁
2024屆江蘇省常州市奔牛高級中學(xué)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第2頁
2024屆江蘇省常州市奔牛高級中學(xué)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第3頁
2024屆江蘇省常州市奔牛高級中學(xué)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第4頁
2024屆江蘇省常州市奔牛高級中學(xué)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省常州市奔牛高級中學(xué)高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,將邊長為的正方形沿對角線折成大小等于的二面角分別為的中點,若,則線段長度的取值范圍為()A. B.C. D.2.在正方體中,為棱的中點,則異面直線與所成角的余弦值為()A. B. C. D.3.把函數(shù),圖象上所有的點向右平行移動個單位長度,橫坐標(biāo)伸長到原來的2倍,所得圖象對應(yīng)的函數(shù)為()A. B.C. D.4.已知數(shù)列是等差數(shù)列,,則(

)A.36 B.30 C.24

D.15.設(shè)、、為平面,為、、直線,則下列判斷正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則6.若雙曲線的漸近線與直線所圍成的三角形面積為2,則該雙曲線的離心率為()A. B. C. D.7.已知是偶函數(shù),且時.若時,的最大值為,最小值為,則()A.2 B.1 C.3 D.8.函數(shù)的最小值為(

)A.6 B.7 C.8 D.99.在區(qū)間上隨機地取一個數(shù).則的值介于0到之間的概率為().A. B. C. D.10.在中,若,,,則等于()A.3 B.4 C.5 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.過點且在坐標(biāo)軸上的截距相等的直線的一般式方程是________.12.已知圓的圓心在直線,與y軸相切,且被直線截得的弦長為,則圓C的標(biāo)準(zhǔn)方程為________.13.若采用系統(tǒng)抽樣的方法從420人中抽取21人做問卷調(diào)查,為此將他們隨機編號為1,2,…,420,則抽取的21人中,編號在區(qū)間[241,360]內(nèi)的人數(shù)是______14.在中,,是線段上的點,,若的面積為,當(dāng)取到最大值時,___________.15.若函數(shù),的最大值為,則的值是________.16.直棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點,BC=CA=CC1,則BM與AN所成的角的余弦值為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知偶函數(shù).(1)若方程有兩不等實根,求的范圍;(2)若在上的最小值為2,求的值.18.已知(且)是R上的奇函數(shù),且.(1)求的解析式;(2)若關(guān)于x的方程在區(qū)間內(nèi)只有一個解,求m的取值集合;(3)設(shè),記,是否存在正整數(shù)n,使不得式對一切均成立?若存在,求出所有n的值,若不存在,說明理由.19.已知數(shù)列的前項和為,.(1)求數(shù)列的通項公式(2)數(shù)列的前項和為,若存在,使得成立,求范圍?20.甲、乙兩臺機床同時加工直徑為10cm的零件,為了檢驗零件的質(zhì)量,從零件中各隨機抽取6件測量,測得數(shù)據(jù)如下(單位:mm):甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分別計算上述兩組數(shù)據(jù)的平均數(shù)和方差(2)根據(jù)(1)的計算結(jié)果,說明哪一臺機床加工的零件更符合要求.21.如圖,在平面直角坐標(biāo)系中,點,直線,設(shè)圓的半徑為1,圓心在上.(1)若圓心也在直線上,過點作圓的切線,求切線方程;(2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

連接和,由二面角的定義得出,由結(jié)合為的中點,可知是的角平分線且,由的范圍可得出的范圍,于是得出的取值范圍.【題目詳解】連接,可得,即有為二面角的平面角,且,在等腰中,,且,,則,故答案為,故選A.【題目點撥】本題考查線段長度的取值范圍,考查二面角的定義以及銳角三角函數(shù)的定義,解題的關(guān)鍵在于充分研究圖形的幾何特征,將所求線段與角建立關(guān)系,借助三角函數(shù)來求解,考查推理能力與計算能力,屬于中等題.2、D【解題分析】

利用,得出異面直線與所成的角為,然后在中利用銳角三角函數(shù)求出.【題目詳解】如下圖所示,設(shè)正方體的棱長為,四邊形為正方形,所以,,所以,異面直線與所成的角為,在正方體中,平面,平面,,,,,在中,,,因此,異面直線與所成角的余弦值為,故選D.【題目點撥】本題考查異面直線所成角的計算,一般利用平移直線,選擇合適的三角形,利用銳角三角函數(shù)或余弦定理求解,考查推理能力與計算能力,屬于中等題.3、C【解題分析】

利用二倍角的余弦公式以及輔助角公式將函數(shù)化為的形式,然后再利用三角函數(shù)的圖像變換即可求解.【題目詳解】函數(shù),函數(shù)圖象上所有的點向右平行移動個單位長度可得,在將橫坐標(biāo)伸長到原來的2倍,可得.故選:C【題目點撥】本題考查了二倍角的余弦公式、輔助角公式以及三角函數(shù)的圖像平移伸縮變換,需熟記公式,屬于基礎(chǔ)題.4、B【解題分析】

通過等差中項的性質(zhì)即可得到答案.【題目詳解】由于,故,故選B.【題目點撥】本題主要考查等差數(shù)列的性質(zhì),難度較小.5、D【解題分析】

根據(jù)線面、面面有關(guān)的定理,對四個選項逐一分析,由此得出正確選項.【題目詳解】A選項不正確,因為根據(jù)面面垂直的性質(zhì)定理,需要加上:在平面內(nèi)或者平行于,這個條件,才能判定.B選項不正確,因為可能平行于.C選項不正確,因為當(dāng)時,或者.D選項正確,根據(jù)垂直于同一條直線的兩個平面平行,得到,直線,則可得到.綜上所述,本小題選D.【題目點撥】本小題主要考查空間線面、面面位置關(guān)系有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.6、A【解題分析】漸近線為,時,,所以,即,,,故選A.7、B【解題分析】

根據(jù)函數(shù)的對稱性得到原題轉(zhuǎn)化為直接求的最大和最小值即可.【題目詳解】因為函數(shù)是偶函數(shù),函數(shù)圖像關(guān)于y軸對稱,故得到時,的最大值和最小值,與時的最大值和最小值是相同的,故直接求的最大和最小值即可;根據(jù)對勾函數(shù)的單調(diào)性得到函數(shù)的最小值為,,故最大值為,此時故答案為:B.【題目點撥】這個題目考查了函數(shù)的奇偶性和單調(diào)性的應(yīng)用,屬于基礎(chǔ)題。對于函數(shù)的奇偶性,主要是體現(xiàn)函數(shù)的對稱性,這樣可以根據(jù)對稱性得到函數(shù)在對稱區(qū)間上的函數(shù)值的關(guān)系,使得問題簡化.8、C【解題分析】

直接利用均值不等式得到答案.【題目詳解】,時等號成立.故答案選C【題目點撥】本題考查了均值不等式,屬于簡單題.9、D【解題分析】

由,得.由函數(shù)的圖像知,使的值介于0到之間的落在和之內(nèi).于是,所求概率為.故答案為D10、D【解題分析】

直接運用正弦定理求解即可.【題目詳解】由正弦定理可知中:,故本題選D.【題目點撥】本題考查了正弦定理的應(yīng)用,考查了數(shù)學(xué)運算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解題分析】

討論直線過原點和直線不過原點兩種情況,分別計算得到答案.【題目詳解】當(dāng)直線過原點時,設(shè),過點,則,即;當(dāng)直線不過原點時,設(shè),過點,則,即;綜上所述:直線方程為或.故答案為:或.【題目點撥】本題考查了直線方程,漏解是容易發(fā)生的錯誤.12、或【解題分析】

由圓心在直線x﹣3y=0上,設(shè)出圓心坐標(biāo),再根據(jù)圓與y軸相切,得到圓心到y(tǒng)軸的距離即圓心橫坐標(biāo)的絕對值等于圓的半徑,表示出半徑r,距離d,由圓的半徑r及表示出的d利用勾股定理列出關(guān)于t的方程,求出方程的解得到t的值,從而得到圓心坐標(biāo)和半徑,根據(jù)圓心和半徑寫出圓的方程即可.【題目詳解】設(shè)圓心為(3t,t),半徑為r=|3t|,則圓心到直線y=x的距離d|t|,而()2=r2﹣d2,9t2﹣2t2=7,t=±1,∴圓心是(3,1)或(-3,-1)故答案為或.【題目點撥】本題綜合考查了垂徑定理,勾股定理及點到直線的距離公式.根據(jù)題意設(shè)出圓心坐標(biāo),找出圓的半徑是解本題的關(guān)鍵.13、6【解題分析】試題分析:由題意得,編號為,由得共6個.考點:系統(tǒng)抽樣14、【解題分析】

由三角形的面積公式得出,設(shè),由可得出,利用基本不等式可求出的值,利用等號成立可得出、的值,再利用余弦利用可得出的值.【題目詳解】由題意可得,解得,設(shè),則,可得,由基本不等式可得,當(dāng)且僅當(dāng)時,取得最大值,,,由余弦定理得,解得.故答案為.【題目點撥】本題考查余弦定理解三角形,同時也考查了三角形的面積公式以及利用基本不等式求最值,在利用基本不等式求最值時,需要結(jié)合已知條件得出定值條件,同時要注意等號成立的條件,考查分析問題和解決問題的能力,屬于中等題.15、【解題分析】

利用兩角差的正弦公式化簡函數(shù)的解析式為,由的范圍可得的范圍,根據(jù)最大值可得的值.【題目詳解】∵函數(shù)=2()=,∵,∴∈[,],又∵的最大值為,所以的最大值為,即=,解得.故答案為【題目點撥】本題主要考查兩角差的正弦公式的應(yīng)用,正弦函數(shù)的定義域和最值,屬于基礎(chǔ)題.16、【解題分析】試題分析:畫出圖形,找出BM與AN所成角的平面角,利用解三角形求出BM與AN所成角的余弦值.解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點,如圖:BC的中點為O,連結(jié)ON,MN,OB,∴MNOB,∴MN0B是平行四邊形,∴BM與AN所成角就是∠ANO,∵BC=CA=CC1,設(shè)BC=CA=CC1=2,∴CO=1,AO=,AN=,MB==,在△ANO中,由余弦定理得:cos∠ANO===.故答案為.考點:異面直線及其所成的角.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解題分析】

(1)由偶函數(shù)的定義,利用,求得的值,再由對數(shù)函數(shù)的單調(diào)性,結(jié)合題設(shè)條件,即可求解實數(shù)的范圍;(2)利用換元法和對勾函數(shù)的單調(diào)性,以及二次函數(shù)的閉區(qū)間上的求法,分類討論對稱軸和區(qū)間的關(guān)系,即可求解.【題目詳解】(1)因為,所以的定義域為,因為是偶函數(shù),即,所以,故,所以,即方程的解為一切實數(shù),所以,因為,且,所以原方程轉(zhuǎn)化為,令,,所以所以在上是減函數(shù),是增函數(shù),當(dāng)時,使成立的有兩個,又由知,與一一對應(yīng),故當(dāng)時,有兩不等實根;(2)因為,所以,所以,令,則,令,設(shè),則,因為,所以,即在上是增函數(shù),所以,設(shè),則.(i)當(dāng)時,的最小值為,所以,解得,或4(舍去);(ii)當(dāng)時,的最小值為,不合題意;(iii)當(dāng)時,的最小值為,所以,解得,或(舍去).綜上知,或.【題目點撥】本題主要考查了函數(shù)的綜合應(yīng)用,其中解答中涉及到函數(shù)的奇偶性,對數(shù)函數(shù)的圖象與性質(zhì),以及換元法和分類討論思想的應(yīng)用,試題綜合性強,屬于難題,著重考查了分析問題和解答問題的能力,以及推理與運算能力.18、(1);(2)m的取值集合或}(3)存在,【解題分析】

(1)利用奇函數(shù)的性質(zhì)得到關(guān)于實數(shù)k的方程,解方程即可,注意驗證所得的結(jié)果;(2)結(jié)合函數(shù)的單調(diào)性和函數(shù)的奇偶性脫去f的符號即可;(3)可得,即可得:即可.【題目詳解】(1)由奇函數(shù)的性質(zhì)可得:,解方程可得:.此時,滿足,即為奇函數(shù).的解析式為:;(2)函數(shù)的解析式為:,結(jié)合指數(shù)函數(shù)的性質(zhì)可得:在區(qū)間內(nèi)只有一個解.即:在區(qū)間內(nèi)只有一個解.(i)當(dāng)時,,符合題意.(ii)當(dāng)時,只需且時,,此時,符合題意綜上,m的取值集合或}(3)函數(shù)為奇函數(shù)關(guān)于對稱又當(dāng)且僅當(dāng)時等號成立所以存在正整數(shù)n,使不得式對一切均成立.【題目點撥】本題考查了復(fù)合型指數(shù)函數(shù)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于難題.19、(1);(2)【解題分析】

(1)根據(jù)之間關(guān)系,可得結(jié)果(2)利用錯位相減法,可得,然后使用分離參數(shù)的方法,根據(jù)單調(diào)性,計算其范圍,可得結(jié)果.【題目詳解】(1)當(dāng)時,兩式相減得:當(dāng)時,,不符合上式所以(2)令,所以所以令①②所以①-②:則化簡可得故,若存在,使得成立即存在,成立故,由,則所以可知數(shù)列在單調(diào)遞增所以,故【題目點撥】本題考查了之間關(guān)系,還考查了錯位相減法求和,本題難點在于的求法,重點在于錯位相減法的應(yīng)用,屬中檔題.20、(1)見解析;(2)乙機床加工的零件更符合要求.【解題分析】

(1)直接由平均數(shù)和方差的計算公式代入數(shù)據(jù)進行計算即可.

(2)由平均數(shù)和方差各自說明數(shù)據(jù)的特征,做出判斷.【題目詳解】(1),,,.(2)因為,,說明甲、乙機床加工的零件的直徑長度的平均值相同.且甲機床加工的零件的直徑長度波動比較大,

因此乙機床加工的零件更符合要求.【題目點撥】本題考查計算數(shù)據(jù)的平均數(shù)和方差以及根據(jù)數(shù)據(jù)的平均數(shù)和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論