版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆吉林省吉林市第二中學(xué)數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若將一個(gè)質(zhì)點(diǎn)隨機(jī)投入如圖所示的長(zhǎng)方形ABCD中,其中AB=2,BC=1,則質(zhì)點(diǎn)落在以AB為直徑的半圓內(nèi)的概率是()A. B. C. D.2.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再將圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變),得到函數(shù)的圖象.若函數(shù)在區(qū)間上有且僅有兩個(gè)零點(diǎn),則的取值范圍為()A. B. C. D.3.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)應(yīng)填()A. B. C. D.4.已知實(shí)數(shù)m,n滿足不等式組則關(guān)于x的方程x2-(3m+2n)x+6mn=0的兩根之和的最大值和最小值分別是()A.7,-4 B.8,-8C.4,-7 D.6,-65.在中,角,,所對(duì)的邊為,,,且為銳角,若,,,則()A. B. C. D.6.函數(shù)的最小正周期為π,若其圖象向左平移個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象()A.關(guān)于點(diǎn)對(duì)稱 B.關(guān)于點(diǎn)對(duì)稱C.關(guān)于直線對(duì)稱 D.關(guān)于直線對(duì)稱7.在等差數(shù)列中,,則等于()A.2 B.18 C.4 D.98.已知正四棱錐的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為,則該正四棱錐的體積為()A. B. C. D.9.在中,內(nèi)角的對(duì)邊分別為,且,,若,則()A.2 B.3 C.4 D.10.將函數(shù)的圖象上各點(diǎn)沿軸向右平移個(gè)單位長(zhǎng)度,所得函數(shù)圖象的一個(gè)對(duì)稱中心為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個(gè)鐵球后,水恰好把鐵球淹沒,則該鐵球的體積為________12.設(shè)扇形的半徑長(zhǎng)為,面積為,則扇形的圓心角的弧度數(shù)是13.關(guān)于的不等式的解集是,則______.14.在等差數(shù)列中,若,則的前13項(xiàng)之和等于______.15.已知,,若,則的取值范圍是__________.16.用數(shù)學(xué)歸納法證明不等式“(且)”的過程中,第一步:當(dāng)時(shí),不等式左邊應(yīng)等于__________。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,某小區(qū)有一塊半徑為米的半圓形空地,開發(fā)商計(jì)劃在該空地上征地建一個(gè)矩形的花壇和一個(gè)等腰三角形的水池EDC,其中為圓心,在圓的直徑上,在半圓周上.(1)設(shè),征地面積為,求的表達(dá)式,并寫出定義域;(2)當(dāng)滿足取得最大值時(shí),建造效果最美觀.試求的最大值,以及相應(yīng)角的值.18.在中,角A、B、C的對(duì)邊分別為a、b、c,面積為S,已知(Ⅰ)求證:成等差數(shù)列;(Ⅱ)若求.19.計(jì)算:(1)(2)(3)20.如圖,是平行四邊形,平面,,,,.(1)求證:平面;(2)求直線與平面所成角的正弦值.21.已知等差數(shù)列滿足:,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和為.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解題分析】試題分析:本題是幾何概型問題,矩形面積2,半圓面積,所以質(zhì)點(diǎn)落在以AB為直徑的半圓內(nèi)的概率是,故選B.考點(diǎn):幾何概型.2、C【解題分析】
寫出變換后的函數(shù)解析式,,,結(jié)合正弦函數(shù)圖象可分析得:要使函數(shù)有且僅有兩個(gè)零點(diǎn),只需,即可得解.【題目詳解】由題,根據(jù)變換關(guān)系可得:,函數(shù)在區(qū)間上有且僅有兩個(gè)零點(diǎn),,,根據(jù)正弦函數(shù)圖象可得:,解得:.故選:C【題目點(diǎn)撥】此題考查函數(shù)圖象的平移和伸縮變換,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍.3、A【解題分析】
根據(jù)程序框圖的結(jié)構(gòu)及輸出結(jié)果,逆向推斷即可得判斷框中的內(nèi)容.【題目詳解】由程序框圖可知,,則所以此時(shí)輸出的值,因而時(shí)退出循環(huán).因而判斷框的內(nèi)容為故選:A【題目點(diǎn)撥】本題考查了根據(jù)程序框圖的輸出值,確定判斷框的內(nèi)容,屬于基礎(chǔ)題.4、A【解題分析】由題意得,方程的兩根之和,畫出約束條件所表示的平面區(qū)域,如圖所示,由,可得,此時(shí),由,可得,此時(shí),故選A.5、D【解題分析】
利用正弦定理化簡(jiǎn),再利用三角形面積公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【題目詳解】由于,有正弦定理可得:,即由于在中,,,所以,聯(lián)立,解得:,由于為銳角,且,所以所以在中,由余弦定理可得:,故(負(fù)數(shù)舍去)故答案選D【題目點(diǎn)撥】本題考查正弦定理,余弦定理,以及面積公式在三角形求邊長(zhǎng)中的應(yīng)用,屬于中檔題.6、C【解題分析】
利用最小正周期為π,求出的值,根據(jù)平移得出,然后利用對(duì)稱性求解.【題目詳解】因?yàn)楹瘮?shù)的最小正周期為π,所以,圖象向左平移個(gè)單位后得到,由得到的函數(shù)是奇函數(shù)可得,即.令得,,故A,B均不正確;令得,,時(shí)可得C正確.故選C.【題目點(diǎn)撥】本題主要考查三角函數(shù)的圖像變換和性質(zhì).平移變換時(shí)注意平移方向和對(duì)解析式的影響,性質(zhì)求解一般利用整體換元意識(shí)來處理.7、D【解題分析】
利用等差數(shù)列性質(zhì)得到,,計(jì)算得到答案.【題目詳解】等差數(shù)列中,故選:D【題目點(diǎn)撥】本題考查了等差數(shù)列的計(jì)算,利用性質(zhì)可以簡(jiǎn)化運(yùn)算,是解題的關(guān)鍵.8、D【解題分析】
求出正四棱錐的高后可求其體積.【題目詳解】正四棱錐底面的對(duì)角線的長(zhǎng)度為,故正四棱錐的高為,所以體積為,故選D.【題目點(diǎn)撥】正棱錐中,棱錐的高、斜高、側(cè)棱和底面外接圓的半徑可構(gòu)成四個(gè)直角三角形,它們溝通了棱錐各個(gè)幾何量之間的關(guān)系,解題中注意利用它們實(shí)現(xiàn)不同幾何量之間的聯(lián)系.9、B【解題分析】
利用正弦定理化簡(jiǎn),由此求得的值.利用三角形內(nèi)角和定理和兩角和與差的正弦公式化簡(jiǎn),由此求得的值,進(jìn)而求得的值.【題目詳解】利用正弦定理化簡(jiǎn)得,所以為銳角,且.由于,所以由得,化簡(jiǎn)得.若,則,故.若,則,由余弦定理得,解得.綜上所述,,故選B.【題目點(diǎn)撥】本小題主要考查正弦定理、余弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查三角形內(nèi)角和定理,考查兩角和與差的正弦公式,屬于中檔題.10、A【解題分析】
先求得圖象變換后的解析式,再根據(jù)正弦函數(shù)對(duì)稱中心,求出正確選項(xiàng).【題目詳解】向右平移的單位長(zhǎng)度,得到,由解得,當(dāng)時(shí),對(duì)稱中心為,故選A.【題目點(diǎn)撥】本小題主要考查三角函數(shù)圖象變換,考查三角函數(shù)對(duì)稱中心的求法,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
通過將圖形轉(zhuǎn)化為平面圖形,然后利用放球前后體積等量關(guān)系求得球的體積.【題目詳解】作出相關(guān)圖形,顯然,因此,因此放球前,球O與邊相切于點(diǎn)M,故,則,所以,,所以放球后,而,而,解得.【題目點(diǎn)撥】本題主要考查圓錐體積與球體積的相關(guān)計(jì)算,建立體積等量關(guān)系是解決本題的關(guān)鍵,意在考查學(xué)生的劃歸能力,計(jì)算能力和分析能力.12、2【解題分析】試題分析:設(shè)扇形圓心角的弧度數(shù)為α,則扇形面積為S=αr2=α×22=4解得:α=2考點(diǎn):扇形面積公式.13、【解題分析】
利用二次不等式解集與二次方程根的關(guān)系,由二次不等式的解集得到二次方程的根,再利用根與系數(shù)的關(guān)系,得到和的值,得到答案.【題目詳解】因?yàn)殛P(guān)于的不等式的解集是,所以關(guān)于的方程的解是,由根與系數(shù)的關(guān)系得,解得,所以.【題目點(diǎn)撥】本題考查二次不等式解集和二次方程根之間的關(guān)系,屬于簡(jiǎn)單題.14、【解題分析】
根據(jù)題意,以及等差數(shù)列的性質(zhì),先得到,再由等差數(shù)列的求和公式,即可求出結(jié)果.【題目詳解】因?yàn)槭堑炔顢?shù)列,,所以,即,記前項(xiàng)和為,則.故答案為:【題目點(diǎn)撥】本題主要考查等差數(shù)列前項(xiàng)和的基本量的運(yùn)算,熟記等差數(shù)列的性質(zhì)以及求和公式即可,屬于基礎(chǔ)題型.15、【解題分析】數(shù)形結(jié)合法,注意y=,y≠0等價(jià)于x2+y2=9(y>0),它表示的圖形是圓x2+y2=9在x軸之上的部分(如圖所示).結(jié)合圖形不難求得,當(dāng)-3<b≤3時(shí),直線y=x+b與半圓x2+y2=9(y>0)有公共點(diǎn).16、【解題分析】
用數(shù)學(xué)歸納法證明不等式(且),第一步,即時(shí),分母從3到6,列出式子,得到答案.【題目詳解】用數(shù)學(xué)歸納法證明不等式(且),第一步,時(shí),左邊式子中每項(xiàng)的分母從3開始增大至6,所以應(yīng)是.即為答案.【題目點(diǎn)撥】本題考查數(shù)學(xué)歸納法的基本步驟,屬于簡(jiǎn)單題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)最大值為,此時(shí)【解題分析】
(1)連接,在中,求出,進(jìn)而求出面積以及角的范圍;(2)令,再求出的范圍,轉(zhuǎn)化為二次函數(shù)即可求出最大值,以及相應(yīng)角的值.【題目詳解】(1)連接,在中,,(2),令,因?yàn)?,所以,所以因?yàn)樵谏蠁握{(diào)遞增,所以時(shí)有最大值為,此時(shí)【題目點(diǎn)撥】本題主要考查三角函數(shù)與實(shí)際應(yīng)用相結(jié)合,最終轉(zhuǎn)化為二次函數(shù)進(jìn)行求解,這類問題的特點(diǎn)是通過現(xiàn)實(shí)生活的事例考查解決問題的能力、仔細(xì)理解題,才能將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型進(jìn)行解答.18、(Ⅰ)詳見解析;(Ⅱ)4.【解題分析】試題分析:(1)在三角形中處理邊角關(guān)系時(shí),一般全部轉(zhuǎn)化為角的關(guān)系,或全部轉(zhuǎn)化為邊的關(guān)系.題中若出現(xiàn)邊的一次式一般采用正弦定理,出現(xiàn)邊的二次式一般采用余弦定理,應(yīng)用正弦、余弦定理時(shí),注意公式變形的應(yīng)用,解決三角形問題時(shí),注意角的限制范圍;(2)在三角興中,注意隱含條件(3)解決三角形問題時(shí),根據(jù)邊角關(guān)系靈活的選用定理和公式.(4)在解決三角形的問題中,面積公式最常用,因?yàn)楣街屑扔羞呌钟薪?,容易和正弦定理、余弦定理?lián)系起來.試題解析:(Ⅰ)由正弦定理得:即2分∴即4分∵∴即∴成等差數(shù)列.6分(Ⅱ)∵∴8分又10分由(Ⅰ)得:∴12分考點(diǎn):三角函數(shù)與解三角形.19、(1);(2);(3).【解題分析】
利用誘導(dǎo)公式,對(duì)每一道題目進(jìn)行化簡(jiǎn)求值.【題目詳解】(1)原式.(2)原式.(3)原式.【題目點(diǎn)撥】在使用誘導(dǎo)公式時(shí),注意“奇變偶不變,符號(hào)看象限”法則的應(yīng)用,即輔助角為的奇數(shù)倍,函數(shù)名要改變;若為的偶數(shù)倍,函數(shù)名不改變.20、(1)見解析;(2).【解題分析】
(1)證明平面平面,然后利用平面與平面平行的性質(zhì)得出平面;(2)作于點(diǎn),連接,證明出平面,可得出直線與平面所成的角為,并計(jì)算出三邊邊長(zhǎng),并利用銳角三角函數(shù)計(jì)算出的正弦值,即可得出答案.【題目詳解】(1)證明:,平面,平面,平面.同理可證平面.,平面平面.平面,平面;(2)作于點(diǎn),連接,平面,平面,.又,,平面.則為與平面所成角,在中,,,,,,,,,,因此,直線與平面所成角的正弦值為.【題目點(diǎn)撥】本題考查直線與平面平行的證明,同時(shí)也考查了直線與平面所成角的計(jì)算,在計(jì)算空間角時(shí)要遵循“一作、二證、三計(jì)算”的原則來求解,考查邏輯推理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年國(guó)家公務(wù)員錄用考試《申論》真題(地市卷)及答案解析
- 中班 秋天課件
- 2024年1月福建省普通高中學(xué)業(yè)水平合格性考試化學(xué)試題(原卷版)
- 社區(qū)少先隊(duì)課件
- 蘇教版科學(xué)課件
- 西南林業(yè)大學(xué)《材料研究及分析方法實(shí)驗(yàn)》2022-2023學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《新媒體短視頻運(yùn)營(yíng)實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 西京學(xué)院《前端開發(fā)技術(shù)》2021-2022學(xué)年期末試卷
- 頜下腺結(jié)石課件
- 西京學(xué)院《句法學(xué)概論》2022-2023學(xué)年期末試卷
- 某廠房主體結(jié)構(gòu)驗(yàn)收匯報(bào)材料
- GB/T 20466-2006水中微囊藻毒素的測(cè)定
- GB/T 18168-2008水上游樂設(shè)施通用技術(shù)條件
- 哈工大《光電測(cè)量技術(shù)》ppt
- 冰凍切片制作與質(zhì)量控制課件
- 醫(yī)療技術(shù)臨床應(yīng)用管理辦法培訓(xùn)課件
- 有效作業(yè)課件
- 病例討論:乙肝肝硬化失代償期課件
- -根據(jù)靶點(diǎn)結(jié)構(gòu)的藥物分子設(shè)計(jì)課件
- 水泥生產(chǎn)工藝流程及過程控制培訓(xùn)課件
- 外科護(hù)理學(xué)試題+答案
評(píng)論
0/150
提交評(píng)論