版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
吉林省乾安七中2024屆數(shù)學(xué)高一下期末聯(lián)考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12.設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有().A. B. C. D.2.下列命題正確的是()A.若,則 B.若,則C.若,,則 D.若,,則3.若滿足,且的最小值為,則實(shí)數(shù)的值為()A. B. C. D.4.如圖,E是平行四邊形ABCD的邊AD的中點(diǎn),設(shè)等差數(shù)列的前n項(xiàng)和為,若,則()A.25 B. C. D.555.已知是偶函數(shù),且時(shí).若時(shí),的最大值為,最小值為,則()A.2 B.1 C.3 D.6.若平面∥平面,直線∥平面,則直線與平面的關(guān)系為()A.∥ B. C.∥或 D.7.()A.0 B. C. D.18.已知,,,則與的夾角為()A. B. C. D.9.下列函數(shù)中,在區(qū)間上為增函數(shù)的是A. B.C. D.10.已知雙曲線的焦點(diǎn)與橢圓的焦點(diǎn)相同,則雙曲線的離心率為()A. B. C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.過點(diǎn)直線與軸的正半軸,軸的正半軸分別交于、兩點(diǎn),為坐標(biāo)原點(diǎn),當(dāng)最小時(shí),直線的一般方程為______.12.若滿足約束條件則的最大值為__________.13.若數(shù)列是等差數(shù)列,則數(shù)列也為等差數(shù)列,類比上述性質(zhì),相應(yīng)地,若正項(xiàng)數(shù)列是等比數(shù)列,則數(shù)列_________也是等比數(shù)列.14.已知棱長都相等正四棱錐的側(cè)面積為,則該正四棱錐內(nèi)切球的表面積為________.15.對于任意實(shí)數(shù)x,不等式恒成立,則實(shí)數(shù)a的取值范圍是______16._________________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓A:,圓B:.(Ⅰ)求經(jīng)過圓A與圓B的圓心的直線方程;(Ⅱ)已知直線l:,設(shè)圓心A關(guān)于直線l的對稱點(diǎn)為,點(diǎn)C在直線l上,當(dāng)?shù)拿娣e為14時(shí),求點(diǎn)C的坐標(biāo).18.2019年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),按閱讀時(shí)間分組:第一組[0,5),第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示.已知第三組的頻數(shù)是第五組頻數(shù)的3倍.(1)求的值,并根據(jù)頻率分布直方圖估計(jì)該校學(xué)生一周課外閱讀時(shí)間的平均值;(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加?!爸腥A詩詞比賽”.經(jīng)過比賽后,從這6人中隨機(jī)挑選2人組成該校代表隊(duì),求這2人來自不同組別的概率.19.如圖,有一直徑為8米的半圓形空地,現(xiàn)計(jì)劃種植甲、乙兩種水果,已知單位面積種植甲水果的經(jīng)濟(jì)價(jià)值是種植乙水果經(jīng)濟(jì)價(jià)值的5倍,但種植甲水果需要有輔助光照.半圓周上的處恰有一可旋轉(zhuǎn)光源滿足甲水果生長的需要,該光源照射范圍是,點(diǎn)在直徑上,且.(1)若,求的長;(2)設(shè),求該空地產(chǎn)生最大經(jīng)濟(jì)價(jià)值時(shí)種植甲種水果的面積.20.已知函數(shù).(1)求函數(shù)f(x)的最小值及f(x)取到最小值時(shí)自變量x的集合;(2)指出函數(shù)y=f(x)的圖象可以由函數(shù)y=sinx的圖象經(jīng)過哪些變換得到;21.在四棱錐中,底面是平行四邊形,平面,點(diǎn),分別為,的中點(diǎn),且,,.(1)證明:平面;(2)求直線與平面所成角的余弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解題分析】
根據(jù)所給數(shù)據(jù),分別求出平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,然后進(jìn)行比較可得選項(xiàng).【題目詳解】,中位數(shù)為,眾數(shù)為.故選:B.【題目點(diǎn)撥】本題主要考查統(tǒng)計(jì)量的求解,明確平均數(shù)、中位數(shù)、眾數(shù)的求解方法是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).2、C【解題分析】
對每一個(gè)選項(xiàng)進(jìn)行判斷,選出正確的答案.【題目詳解】A.若,則,取不成立B.若,則,取不成立C.若,,則,正確D.若,,則,取不成立故答案選C【題目點(diǎn)撥】本題考查了不等式的性質(zhì),找出反例是解題的關(guān)鍵.3、B【解題分析】
首先畫出滿足條件的平面區(qū)域,然后根據(jù)目標(biāo)函數(shù)取最小值找出最優(yōu)解,把最優(yōu)解點(diǎn)代入目標(biāo)函數(shù)即可求出的值.【題目詳解】畫出滿足條件的平面區(qū)域,如圖所示:,由,解得:,由得:,顯然直線過時(shí),z最小,∴,解得:,故選B.【題目點(diǎn)撥】本題主要考查簡單的線性規(guī)劃,已知目標(biāo)函數(shù)最值求參數(shù)的問題,屬于常考題型.4、D【解題分析】
根據(jù)向量的加法和平面向量定理,得到和的值,從而得到等差數(shù)列的公差,根據(jù)等差數(shù)列求和公式,得到答案.【題目詳解】因?yàn)镋是平行四邊形ABCD的邊AD的中點(diǎn),所以,因?yàn)椋?,,所以等差?shù)列的公差,所以.故選:D.【題目點(diǎn)撥】本題考查向量的加法和平面向量定理,等差數(shù)列求和公式,屬于簡單題.5、B【解題分析】
根據(jù)函數(shù)的對稱性得到原題轉(zhuǎn)化為直接求的最大和最小值即可.【題目詳解】因?yàn)楹瘮?shù)是偶函數(shù),函數(shù)圖像關(guān)于y軸對稱,故得到時(shí),的最大值和最小值,與時(shí)的最大值和最小值是相同的,故直接求的最大和最小值即可;根據(jù)對勾函數(shù)的單調(diào)性得到函數(shù)的最小值為,,故最大值為,此時(shí)故答案為:B.【題目點(diǎn)撥】這個(gè)題目考查了函數(shù)的奇偶性和單調(diào)性的應(yīng)用,屬于基礎(chǔ)題。對于函數(shù)的奇偶性,主要是體現(xiàn)函數(shù)的對稱性,這樣可以根據(jù)對稱性得到函數(shù)在對稱區(qū)間上的函數(shù)值的關(guān)系,使得問題簡化.6、C【解題分析】
利用空間幾何體,發(fā)揮直觀想象,易得直線與平面的位置關(guān)系.【題目詳解】設(shè)平面為長方體的上底面,平面為長方體的下底面,因?yàn)橹本€∥平面,所以直線通過平移后,可能與平面平行,也可能平移到平面內(nèi),所以∥或.【題目點(diǎn)撥】空間中點(diǎn)、線、面位置關(guān)系問題,??梢越柚L方體進(jìn)行研究,考查直觀想象能力.7、C【解題分析】試題分析:考點(diǎn):兩角和正弦公式8、C【解題分析】
設(shè)與的夾角為,計(jì)算出、、的值,再利用公式結(jié)合角的取值范圍可求出的值.【題目詳解】設(shè)與的夾角為,則,,,另一方面,,,,因此,,,因此,,故選C.【題目點(diǎn)撥】本題考查利用平面向量的數(shù)量積計(jì)算平面向量的夾角,解題的關(guān)鍵就是計(jì)算出、、的值,考查計(jì)算能力,屬于中等題.9、A【解題分析】試題分析:對A,函數(shù)在上為增函數(shù),符合要求;對B,在上為減函數(shù),不符合題意;對C,為上的減函數(shù),不符合題意;對D,在上為減函數(shù),不符合題意.故選A.考點(diǎn):函數(shù)的單調(diào)性,容易題.10、B【解題分析】根據(jù)橢圓可以知焦點(diǎn)為,離心率,故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
設(shè)直線的截距式方程為,利用該直線過可得,再利用基本不等式可求何時(shí)即取最小值,從而得到相應(yīng)的直線方程.【題目詳解】設(shè)直線的截距式方程為,其中且.因?yàn)橹本€過,故.所以,由基本不等式可知,當(dāng)且僅當(dāng)時(shí)等號成立,故當(dāng)取最小值時(shí),直線方程為:.填.【題目點(diǎn)撥】直線方程有五種形式,常用的形式有點(diǎn)斜式、斜截式、截距式、一般式,垂直于的軸的直線沒有點(diǎn)斜式、斜截式和截距式,垂直于軸的直線沒有截距式,注意根據(jù)題設(shè)所給的條件選擇合適的方程的形式,特別地,如果考慮的問題是與直線、坐標(biāo)軸圍成的直角三角形有關(guān)的問題,可考慮利用截距式.12、【解題分析】
作出可行域,根據(jù)目標(biāo)函數(shù)的幾何意義可知當(dāng)時(shí),.【題目詳解】不等式組表示的可行域是以為頂點(diǎn)的三角形區(qū)域,如下圖所示,目標(biāo)函數(shù)的最大值必在頂點(diǎn)處取得,易知當(dāng)時(shí),.【題目點(diǎn)撥】線性規(guī)劃問題是高考中??伎键c(diǎn),主要以選擇及填空的形式出現(xiàn),基本題型為給出約束條件求目標(biāo)函數(shù)的最值,主要結(jié)合方式有:截距型、斜率型、距離型等.13、【解題分析】
利用類比推理分析,若數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,則當(dāng)時(shí),數(shù)列也是等比數(shù)列.【題目詳解】由數(shù)列是等差數(shù)列,則當(dāng)時(shí),數(shù)列也是等差數(shù)列.類比上述性質(zhì),若數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,則當(dāng)時(shí),數(shù)列也是等比數(shù)列.故答案為:【題目點(diǎn)撥】類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).14、【解題分析】
根據(jù)側(cè)面積求出正四棱錐的棱長,畫出組合體的截面圖,根據(jù)三角形的相似求得四棱錐內(nèi)切球的半徑,于是可得內(nèi)切球的表面積.【題目詳解】設(shè)正四棱錐的棱長為,則,解得.于是該正四棱錐內(nèi)切球的大圓是如圖△PMN的內(nèi)切圓,其中,.∴.設(shè)內(nèi)切圓的半徑為,由∽,得,即,解得,∴內(nèi)切球的表面積為.【題目點(diǎn)撥】與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時(shí)要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點(diǎn)為正方體各個(gè)面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點(diǎn)均在球面上,正方體的體對角線長等于球的直徑.15、【解題分析】
對a分類討論,利用判別式,即可得到結(jié)論.【題目詳解】(1)a﹣2=0,即a=2時(shí),﹣4<0,恒成立;(2)a﹣2≠0時(shí),,解得﹣2<a<2,∴﹣2<a≤2故答案為:.【題目點(diǎn)撥】對于二次函數(shù)的研究一般從以幾個(gè)方面研究:一是,開口;二是,對稱軸,主要討論對稱軸與區(qū)間的位置關(guān)系;三是,判別式,決定于x軸的交點(diǎn)個(gè)數(shù);四是,區(qū)間端點(diǎn)值.16、3【解題分析】
分式上下為的二次多項(xiàng)式,故上下同除以進(jìn)行分析.【題目詳解】由題,,又,故.
故答案為:3.【題目點(diǎn)撥】本題考查了分式型多項(xiàng)式的極限問題,注意:當(dāng)時(shí),三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)(Ⅱ)或【解題分析】
(Ⅰ)由已知求得,的坐標(biāo),再由直線方程的兩點(diǎn)式得答案;(Ⅱ)求出的坐標(biāo),再求出以及所在直線方程,設(shè),利用點(diǎn)到直線的距離公式求出到所在直線的距離,代入三角形面積公式解得值,進(jìn)而可得的坐標(biāo).【題目詳解】(Ⅰ)將圓:化為:,所以,圓:化為:,所以,所以經(jīng)過圓與圓的圓心的直線方程為:,即.(Ⅱ)如圖,設(shè),由題意可得,解得,即,∴,所在直線方程為,即,設(shè),則到所在直線的距離,由,解得或,∴點(diǎn)的坐標(biāo)為或.【題目點(diǎn)撥】本題考查直線與圓位置關(guān)系的應(yīng)用,考查點(diǎn)關(guān)于直線的對稱點(diǎn)的求法,考查運(yùn)算求解能力,屬于中檔題.18、(1)a=0.06,平均值為12.25小時(shí)(2)【解題分析】
(1)由頻率分布直方圖可得第三組和第五組的頻率之和,第三組的頻率,由此能求出a和該樣本數(shù)據(jù)的平均數(shù),從而可估計(jì)該校學(xué)生一周課外閱讀時(shí)間的平均值;(2)從第3、4、5組抽取的人數(shù)分別為3、2、1,設(shè)為A,B,C,D,E,F(xiàn),利用列舉法能求出從該6人中選拔2人,從而得到這2人來自不同組別的概率.【題目詳解】(1)由頻率分布直方圖可得第三組和第五組的頻率之和為,第三組的頻率為∴該樣本數(shù)據(jù)的平均數(shù)所以可估計(jì)該校學(xué)生一周課外閱讀時(shí)間的平均值為小時(shí).(2)易得從第3、4、5組抽取的人數(shù)分別為3、2、1,設(shè)為,則從該6人中選拔2人的基本事件有:共15種,其中來自不同的組別的基本事件有:,共11種,∴這2人來自不同組別的概率為.【題目點(diǎn)撥】本題考查平均數(shù)、概率的求法,考查古典概型、頻率分布直方圖等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.19、(1)1或3(2)【解題分析】
試題分析:(1)在中,因?yàn)?,,,所以由余弦定理,且,,所以,解得或?)該空地產(chǎn)生最大經(jīng)濟(jì)價(jià)值等價(jià)于種植甲種水果的面積最大,所以用表示出,再利用三角函數(shù)求最值得試題解析:(1)連結(jié),已知點(diǎn)在以為直徑的半圓周上,所以為直角三角形,因?yàn)?,,所以,,在中由余弦定理,且,所以,解得或,?)因?yàn)?,,所以,所以,在中由正弦定理得:所以,在中,由正弦定理得:所以,若產(chǎn)生最大經(jīng)濟(jì)效益,則的面積最大,,因?yàn)?,所以所以?dāng)時(shí),取最大值為,此時(shí)該地塊產(chǎn)生的經(jīng)濟(jì)價(jià)值最大考點(diǎn):①解三角形及正弦定理的應(yīng)用②三角函數(shù)求最值20、(1),此時(shí)自變量的集合是(2)見解析【解題分析】
(1)根據(jù)三角函數(shù)的性質(zhì),即可求解;(2)根據(jù)三角函數(shù)的圖形變換規(guī)律,即可得到?!绢}目詳解】(1),此時(shí),,即,,即此時(shí)自變量的集合是.(2)把函數(shù)的圖象向右平移個(gè)單位長度,得到函數(shù)的圖象,再把函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?,得到函?shù)的圖象,最后再把函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得到函數(shù)的圖象.【題目點(diǎn)撥】本題主要考查正弦函數(shù)的性質(zhì)應(yīng)用,以及三角函數(shù)的圖象變換規(guī)律的應(yīng)用。21、(1)見解析(2)【解題分析】
(1)取中點(diǎn),連接,,構(gòu)造平行四邊形,由線線平行得到線面平行;(2)根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年雞場生態(tài)養(yǎng)殖與技術(shù)開發(fā)合同3篇
- 2024適用個(gè)人借貸協(xié)議模板版B版
- 2024年第三方擔(dān)保責(zé)任合同執(zhí)行與監(jiān)督管理細(xì)則3篇
- 2024年離婚財(cái)產(chǎn)分配模板合同
- 2025年度風(fēng)力發(fā)電機(jī)組安裝合同3篇
- 2024環(huán)保項(xiàng)目居間合作合同
- 2024智能交通工具設(shè)計(jì)與制造合作協(xié)議
- 2024旅行社租車協(xié)議、合同
- 2024年社區(qū)生鮮自助取貨協(xié)議3篇
- 2024房地產(chǎn)融資居間合同格式范文
- 排水許可申請表
- [QC成果]提高剪力墻施工質(zhì)量一次合格率
- 移印工作業(yè)指導(dǎo)書
- 樂高基礎(chǔ)篇樂高積木和搭建種類專題培訓(xùn)課件
- 低血糖的觀察和護(hù)理課件
- 事故形成的冰山理論
- 溶解度曲線教學(xué)設(shè)計(jì)
- 硅膠產(chǎn)品工藝流程圖
- 醫(yī)院各科室規(guī)章制度匯編
- 土地翻耕施工組織方案
- 學(xué)校中層干部量化考核表
評論
0/150
提交評論