山東省聊城第二中學(xué)2024屆數(shù)學(xué)高三第一學(xué)期期末綜合測試試題含解析_第1頁
山東省聊城第二中學(xué)2024屆數(shù)學(xué)高三第一學(xué)期期末綜合測試試題含解析_第2頁
山東省聊城第二中學(xué)2024屆數(shù)學(xué)高三第一學(xué)期期末綜合測試試題含解析_第3頁
山東省聊城第二中學(xué)2024屆數(shù)學(xué)高三第一學(xué)期期末綜合測試試題含解析_第4頁
山東省聊城第二中學(xué)2024屆數(shù)學(xué)高三第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山東省聊城第二中學(xué)2024屆數(shù)學(xué)高三第一學(xué)期期末綜合測試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在原點(diǎn)附近的部分圖象大概是()A. B.C. D.2.記遞增數(shù)列的前項(xiàng)和為.若,,且對中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.3.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.4.函數(shù)的部分圖象大致是()A. B.C. D.5.拋物線方程為,一直線與拋物線交于兩點(diǎn),其弦的中點(diǎn)坐標(biāo)為,則直線的方程為()A. B. C. D.6.關(guān)于函數(shù)有下述四個(gè)結(jié)論:()①是偶函數(shù);②在區(qū)間上是單調(diào)遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個(gè)零點(diǎn).其中所有正確結(jié)論的編號是()A.①②④ B.①③ C.①④ D.②④7.()A. B. C.1 D.8.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件9.已知為拋物線的焦點(diǎn),點(diǎn)在上,若直線與的另一個(gè)交點(diǎn)為,則()A. B. C. D.10.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對稱11.若復(fù)數(shù)滿足,則()A. B. C. D.12.函數(shù)在上的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的離心率為,則雙曲線的漸近線方程為______.14.已知等差數(shù)列滿足,,則的值為________.15.若滿足,則目標(biāo)函數(shù)的最大值為______.16.五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個(gè)音階全用上,排成一個(gè)五個(gè)音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成______種不同的音序.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知;.(1)若為真命題,求實(shí)數(shù)的取值范圍;(2)若為真命題且為假命題,求實(shí)數(shù)的取值范圍.18.(12分)已知,.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)的三個(gè)內(nèi)角、、所對邊分別為、、,若且,求面積的取值范圍.19.(12分)在銳角三角形中,角的對邊分別為.已知成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)若的面積為求的值.20.(12分)某地在每周六的晚上8點(diǎn)到10點(diǎn)半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時(shí)刻亮燈的概率均為,并且是否亮燈彼此相互獨(dú)立.現(xiàn)統(tǒng)計(jì)了其中100盞燈在一場燈光展中亮燈的時(shí)長(單位:),得到下面的頻數(shù)表:亮燈時(shí)長/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時(shí)長作為一盞燈的亮燈時(shí)長.(1)試估計(jì)的值;(2)設(shè)表示這10000盞燈在某一時(shí)刻亮燈的數(shù)目.①求的數(shù)學(xué)期望和方差;②若隨機(jī)變量滿足,則認(rèn)為.假設(shè)當(dāng)時(shí),燈光展處于最佳燈光亮度.試由此估計(jì),在一場燈光展中,處于最佳燈光亮度的時(shí)長(結(jié)果保留為整數(shù)).附:①某盞燈在某一時(shí)刻亮燈的概率等于亮燈時(shí)長與燈光展總時(shí)長的商;②若,則,,.21.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為.(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程及的直角坐標(biāo)方程;(2)求曲線上的點(diǎn)到距離的取值范圍.22.(10分)如圖,設(shè)A是由個(gè)實(shí)數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實(shí)數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構(gòu)成的集合.對于,記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個(gè)AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數(shù)n,對于所有的AS(n,n),求l(A)的取值集合.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結(jié)合排除法可得出正確選項(xiàng).【詳解】令,可得,即函數(shù)的定義域?yàn)?,定義域關(guān)于原點(diǎn)對稱,,則函數(shù)為奇函數(shù),排除C、D選項(xiàng);當(dāng)時(shí),,,則,排除B選項(xiàng).故選:A.【點(diǎn)睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調(diào)性、零點(diǎn)以及函數(shù)值符號,考查分析問題和解決問題的能力,屬于中等題.2、D【解析】

由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點(diǎn)睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.3、D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實(shí)數(shù)的方程可得:.本題選擇D選項(xiàng).4、C【解析】

判斷函數(shù)的性質(zhì),和特殊值的正負(fù),以及值域,逐一排除選項(xiàng).【詳解】,函數(shù)是奇函數(shù),排除,時(shí),,時(shí),,排除,當(dāng)時(shí),,時(shí),,排除,符合條件,故選C.【點(diǎn)睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎(chǔ)題型,一般根據(jù)選項(xiàng)判斷函數(shù)的奇偶性,零點(diǎn),特殊值的正負(fù),以及單調(diào)性,極值點(diǎn)等排除選項(xiàng).5、A【解析】

設(shè),,利用點(diǎn)差法得到,所以直線的斜率為2,又過點(diǎn),再利用點(diǎn)斜式即可得到直線的方程.【詳解】解:設(shè),∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點(diǎn),∴直線的方程為:,即,故選:A.【點(diǎn)睛】本題考查直線與拋物線相交的中點(diǎn)弦問題,解題方法是“點(diǎn)差法”,即設(shè)出弦的兩端點(diǎn)坐標(biāo),代入拋物線方程相減后可把弦所在直線斜率與中點(diǎn)坐標(biāo)建立關(guān)系.6、C【解析】

根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn)對四個(gè)結(jié)論逐一分析,由此得出正確結(jié)論的編號.【詳解】的定義域?yàn)?由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以②錯(cuò)誤.當(dāng)時(shí),,且存在,使.所以當(dāng)時(shí),;由于為偶函數(shù),所以時(shí),所以的最大值為,所以③錯(cuò)誤.依題意,,當(dāng)時(shí),,所以令,解得,令,解得.所以在區(qū)間,有兩個(gè)零點(diǎn).由于為偶函數(shù),所以在區(qū)間有兩個(gè)零點(diǎn).故在區(qū)間上有4個(gè)零點(diǎn).所以④正確.綜上所述,正確的結(jié)論序號為①④.故選:C【點(diǎn)睛】本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.7、A【解析】

利用復(fù)數(shù)的乘方和除法法則將復(fù)數(shù)化為一般形式,結(jié)合復(fù)數(shù)的模長公式可求得結(jié)果.【詳解】,,因此,.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)模長的計(jì)算,同時(shí)也考查了復(fù)數(shù)的乘方和除法法則的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.8、D【解析】

充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運(yùn)算即可說明成立;必要性中,由數(shù)量積運(yùn)算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點(diǎn)睛】本題考查平面向量數(shù)量積的運(yùn)算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.9、C【解析】

求得點(diǎn)坐標(biāo),由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點(diǎn)坐標(biāo),進(jìn)而求得【詳解】拋物線焦點(diǎn)為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【點(diǎn)睛】本小題主要考查拋物線的弦長的求法,屬于基礎(chǔ)題.10、B【解析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對稱中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對稱.故選B.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.11、C【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡,再由復(fù)數(shù)模的計(jì)算公式求解.【詳解】解:由,得,∴.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,是基礎(chǔ)題.12、A【解析】

首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,排除C;而,排除B;,排除D.故選:.【點(diǎn)睛】本題考查函數(shù)圖象的識(shí)別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用,得到的關(guān)系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因?yàn)殡p曲線的離心率為,所以,即,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì);考查運(yùn)算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.14、11【解析】

由等差數(shù)列的下標(biāo)和性質(zhì)可得,由即可求出公差,即可求解;【詳解】解:設(shè)等差數(shù)列的公差為,,又因?yàn)椋獾霉蚀鸢笧椋骸军c(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式及等差數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.15、-1【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖,化目標(biāo)函數(shù)為,由圖可得,當(dāng)直線過點(diǎn)時(shí),直線在軸上的截距最大,由得即,則有最大值,故答案為.【點(diǎn)睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.16、1【解析】

按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個(gè)或第四個(gè)位置上,即可求出.【詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時(shí)有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側(cè);③若“角”在第二個(gè)或第四個(gè)位置上,則有種;綜上,共有種.故答案為:1.【點(diǎn)睛】本題主要考查利用排列知識(shí)解決實(shí)際問題,涉及分步計(jì)數(shù)乘法原理和分類計(jì)數(shù)加法原理的應(yīng)用,意在考查學(xué)生分類討論思想的應(yīng)用和綜合運(yùn)用知識(shí)的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】

(1)根據(jù)為真命題列出不等式,進(jìn)而求得實(shí)數(shù)的取值范圍;(2)應(yīng)用復(fù)合命題真假判定的口訣:真“非”假,假“非”真,一真“或”為真,兩真“且”才真.【詳解】(1),且,解得所以當(dāng)為真命題時(shí),實(shí)數(shù)的取值范圍是.(2)由,可得,又∵當(dāng)時(shí),,.∵當(dāng)為真命題,且為假命題時(shí),∴與的真假性相同,當(dāng)假假時(shí),有,解得;當(dāng)真真時(shí),有,解得;故當(dāng)為真命題且為假命題時(shí),可得或.【點(diǎn)睛】本題主要考查結(jié)合不等式的含有量詞的命題的恒成立問題,存在性問題,考查復(fù)合命題的真假判斷,意在考查學(xué)生對這些知識(shí)的掌握水平和分析推理能力.18、(1);(2).【解析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,利用余弦定理結(jié)合基本不等式求出的取值范圍,再結(jié)合三角形的面積公式可求得面積的取值范圍.【詳解】(1),解不等式,解得.因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由題意,則,,,,解得.由余弦定理得,又,,當(dāng)且僅當(dāng)時(shí)取等號,所以,的面積.【點(diǎn)睛】本題考查正弦型函數(shù)單調(diào)區(qū)間的求解,同時(shí)也考查了三角形面積取值范圍的計(jì)算,涉及余弦定理和基本不等式的應(yīng)用,考查計(jì)算能力,屬于中等題.19、(1);(2).【解析】

(1)根據(jù)成等差數(shù)列與三角形內(nèi)角和可知,再利用兩角和的正切公式,代入化簡可得,同理根據(jù)三角形內(nèi)角和與余弦的兩角和公式與等比數(shù)列的性質(zhì)可求得,聯(lián)立即可求解求的值.(2)由(1)可知,再根據(jù)同角三角函數(shù)的關(guān)系與正弦定理可求得,再結(jié)合的面積為利用面積公式求解即可.【詳解】解:成等差數(shù)列,可得而,即,展開化簡得,因?yàn)?故①又成等比數(shù)列,可得,即,可得聯(lián)立解得(負(fù)的舍去),可得銳角;由可得,由為銳角,解得,因?yàn)闉殇J角,故可得,由正弦定理可得,又的面積為可得,解得.【點(diǎn)睛】本題主要考查了等差等比中項(xiàng)的運(yùn)用以及正切的和差角公式以及同角三角函數(shù)關(guān)系等.同時(shí)也考查了正弦定理與面積公式在解三角形中的運(yùn)用,屬于中檔題.20、(1)(2)①,,②72【解析】

(1)將每組數(shù)據(jù)的組中值乘以對應(yīng)的頻率,然后再將結(jié)果相加即可得到亮燈時(shí)長的平均數(shù),將此平均數(shù)除以(個(gè)小時(shí)),即可得到的估計(jì)值;(2)①利用二項(xiàng)分布的均值與方差的計(jì)算公式進(jìn)行求解;②先根據(jù)條件計(jì)算出的取值范圍,然后根據(jù)并結(jié)合正態(tài)分布概率的對稱性,求解出在滿足取值范圍下對應(yīng)的概率.【詳解】(1)平均時(shí)間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時(shí)間長度為72分鐘.【點(diǎn)睛】本題考查根據(jù)頻數(shù)分布表求解平均數(shù)、幾何概型(長度模型)、二項(xiàng)分布的均值與方差、正態(tài)分布的概率計(jì)算,屬于綜合性問題,難度一般.(1)如果,則;(2)計(jì)算正態(tài)分布中的概率,一定要活用正態(tài)分布圖象的對稱性對應(yīng)概率的對稱性.21、(1),.(2)【解析】

(1)根據(jù)直線的參數(shù)方程為(為參數(shù)),消去參數(shù),即可求得的的普通方程,曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:,即可求得答案;(2)的標(biāo)準(zhǔn)方程為,圓心為,半徑為,根據(jù)點(diǎn)到直線距離公式,即可求得答案.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去參數(shù)的普通方程為.曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:的直角坐標(biāo)方程為.(2)的標(biāo)準(zhǔn)方程為,圓心為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論