吉林省吉林地區(qū)普通高中友好學(xué)校聯(lián)合體2024屆數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第1頁
吉林省吉林地區(qū)普通高中友好學(xué)校聯(lián)合體2024屆數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第2頁
吉林省吉林地區(qū)普通高中友好學(xué)校聯(lián)合體2024屆數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第3頁
吉林省吉林地區(qū)普通高中友好學(xué)校聯(lián)合體2024屆數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第4頁
吉林省吉林地區(qū)普通高中友好學(xué)校聯(lián)合體2024屆數(shù)學(xué)高一第二學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省吉林地區(qū)普通高中友好學(xué)校聯(lián)合體2024屆數(shù)學(xué)高一第二學(xué)期期末考試模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某校進(jìn)行了一次消防安全知識競賽,參賽學(xué)生的得分經(jīng)統(tǒng)計得到如圖的頻率分布直方圖,若得分在的有60人,則參賽學(xué)生的總?cè)藬?shù)為()A.100 B.120 C.150 D.2002.在非直角中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要3.已知a,b,c為△ABC的三個內(nèi)角A,B,C的對邊,向量=,=(cosA,sinA),若與夾角為,則acosB+bcosA=csinC,則角B等于()A. B. C. D.4.在中,角A,B,C所對的邊分別為a,b,c,且滿足,若,則周長的最大值為()A.9 B.10 C.11 D.125.已知數(shù)列的前項和為,且,,則()A.200 B.210 C.400 D.4106.若正實數(shù)滿足,則的最小值為A. B. C. D.7.已知m,n是兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確的是()A.若α∥β,mα,nβ,則m∥n B.若α⊥β,mα,則m⊥βC.若α⊥β,mα,nβ,則m⊥n D.若α∥β,mα,則m∥β8.某小組共有5名學(xué)生,其中男生3名,女生2名,現(xiàn)選舉2名代表,則恰有1名女生當(dāng)選的概率為()A. B. C. D.9.已知向量,,,的夾角為45°,若,則()A. B. C.2 D.310.已知a,b,c為實數(shù),則下列結(jié)論正確的是()A.若ac>bc>0,則a>b B.若a>b>0,則ac>bcC.若ac2>bc2,則a>b D.若a>b,則ac2>bc2二、填空題:本大題共6小題,每小題5分,共30分。11.已知方程的四個根組成一個首項為的等差數(shù)列,則_____.12.已知函數(shù),該函數(shù)零點的個數(shù)為_____________13.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個鐵球后,水恰好把鐵球淹沒,則該鐵球的體積為________14.若,且,則的最小值為_______.15.若,,,則M與N的大小關(guān)系為___________.16.經(jīng)過點且在x軸上的截距等于在y軸上的截距的直線方程是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在平面四邊形中,已知,,在上取點,使得,連接,若,。(1)求的值;(2)求的長。18.已知,且為第二象限角.(Ⅰ)求的值;(Ⅱ)求的值.19.已知等比數(shù)列的公比,且,.(1)求數(shù)列的通項公式;(2)設(shè),是數(shù)列的前項和,對任意正整數(shù)不等式恒成立,求的取值范圍.20.已知為銳角三角形,內(nèi)角A,B,C的對邊分別為a,b,c,若.(1)求C;(2)若,且的面積為,求的周長.21.在等比數(shù)列中,.(1)求的通項公式;(2)若,求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

根據(jù)頻率分布直方圖求出得分在的頻率,即可得解.【題目詳解】根據(jù)頻率分布直方圖可得:得分在的頻率0.35,得分在的頻率0.3,得分在的頻率0.2,得分在的頻率0.1,所以得分在的頻率0.05,得分在的頻率為0.4,有60人,所以參賽學(xué)生的總?cè)藬?shù)為60÷0.4=150人.故選:C【題目點撥】此題考查根據(jù)頻率分布直方圖求某組的頻率,根據(jù)頻率分布直方圖的特征計算小矩形的面積,根據(jù)總面積之和為1計算未知數(shù),結(jié)合頻率頻數(shù)計算總?cè)藬?shù).2、C【解題分析】

由得出,利用切化弦的思想得出其等價條件,再利用充分必要性判斷出兩條件之間的關(guān)系.【題目詳解】若,則,易知,,,,,,,,,.因此,“”是“”的充要條件,故選C.【題目點撥】本題考查充分必要性的判斷,同時也考查了切化弦思想、兩角和差的正弦公式的應(yīng)用,在討論三角函數(shù)值符號時,要充分考慮角的取值范圍,考查分析問題和解決問題的能力,屬于中等題.3、B【解題分析】

根據(jù)向量夾角求得角的度數(shù),再利用正弦定理求得即得解.【題目詳解】由已知得:所以所以由正弦定理得:所以又因為所以因為所以所以故選B.【題目點撥】本題考查向量的數(shù)量積和正弦定理,屬于中檔題.4、D【解題分析】

利用正弦定理和三角函數(shù)關(guān)系式,求得的值,由角的范圍求出角的的大小,再由條件和余弦定理列出方程,結(jié)合基本不等式,即可求解.【題目詳解】由,根據(jù)正弦定理可得,因為,所以,所以,即,又由,所以,由余弦定理可得,又因為,當(dāng)且僅當(dāng)時等號成立,又由,所以,即,所以三角形的周長的最大值為.故選:D.【題目點撥】本題主要考查了正弦定理、余弦定理和正弦函數(shù)的性質(zhì),以及基本不等式的應(yīng)用綜合應(yīng)用,著重考查了推理與運(yùn)算能力,屬于中檔試題.5、B【解題分析】

首先利用遞推關(guān)系式求出數(shù)列的通項公式,進(jìn)一步利用等差數(shù)列的前項和公式的應(yīng)用求出結(jié)果.【題目詳解】由題,,又因為所以當(dāng)時,可解的當(dāng)時,,與相減得當(dāng)為奇數(shù)時,數(shù)列是以為首相,為公差的等差數(shù)列,當(dāng)為偶數(shù)時,數(shù)列是以為首相,為公差的等差數(shù)列,所以當(dāng)為正整數(shù)時,,則故選B.【題目點撥】本題考查的知識點有數(shù)列通項公式的求法及應(yīng)用,等差數(shù)列的前項和公式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于一般題.6、D【解題分析】

將變成,可得,展開后利用基本不等式求解即可.【題目詳解】,,,,當(dāng)且僅當(dāng),取等號,故選D.【題目點撥】本題主要考查利用基本不等式求最值,屬于中檔題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內(nèi),二是多次用或時等號能否同時成立).7、D【解題分析】

在中,與平行或異面;在中,與相交、平行或;在中,與相交、平行或異面;在中,由線面平行的性質(zhì)定理得.【題目詳解】由,是兩條不同的直線,,是兩個不同的平面,知:在中,若,,,則與平行或異面,故錯誤;在中,若,,則與相交、平行或,故錯誤;在中,若,,,則與相交、平行或異面,故錯誤;在中,若,,則由線面平行的性質(zhì)定理得,故正確.故選.【題目點撥】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,屬于中檔題.8、B【解題分析】

記三名男生為,兩名女生為,分別列舉出基本事件,得出基本事件總數(shù)和恰有1名女生當(dāng)選包含的基本事件個數(shù),即可得解.【題目詳解】記三名男生為,兩名女生為,任選2名所有可能情況為,共10種,恰有一名女生的情況為,共6種,所以恰有1名女生當(dāng)選的概率為.故選:B【題目點撥】此題考查根據(jù)古典概型求概率,關(guān)鍵在于準(zhǔn)確計算出基本事件總數(shù),和某一事件包含的基本事件個數(shù).9、C【解題分析】

利用向量乘法公式得到答案.【題目詳解】向量,,,的夾角為45°故答案選C【題目點撥】本題考查了向量的運(yùn)算,意在考查學(xué)生的計算能力.10、C【解題分析】

本題可根據(jù)不等式的性質(zhì)以及運(yùn)用特殊值法進(jìn)行代入排除即可得到正確結(jié)果.【題目詳解】由題意,可知:對于A中,可設(shè),很明顯滿足,但,所以選項A不正確;對于B中,因為不知道的正負(fù)情況,所以不能直接得出,所以選項B不正確;對于C中,因為,所以,所以,所以選項C正確;對于D中,若,則不能得到,所以選項D不正確.故選:C.【題目點撥】本題主要考查了不等式性質(zhì)的應(yīng)用以及特殊值法的應(yīng)用,著重考查了推理能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

把方程(x2﹣2x+m)(x2﹣2x+n)=0化為x2﹣2x+m=0,或x2﹣2x+n=0,設(shè)是第一個方程的根,代入方程即可求得m,則方程的另一個根可求;設(shè)另一個方程的根為s,t,(s≤t)根據(jù)韋達(dá)定理可知∴s+t=2根據(jù)等差中項的性質(zhì)可知四個跟成的等差數(shù)列為,s,t,,進(jìn)而根據(jù)數(shù)列的第一項和第四項求得公差,則s和t可求,進(jìn)而根據(jù)韋達(dá)定理求得n,最后代入|m﹣n|即可.【題目詳解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化為x2﹣2x+m=0①,或x2﹣2x+n=0②,設(shè)是方程①的根,則將代入方程①,可解得m,∴方程①的另一個根為.設(shè)方程②的另一個根為s,t,(s≤t)則由根與系數(shù)的關(guān)系知,s+t=2,st=n,又方程①的兩根之和也是2,∴s+t由等差數(shù)列中的項的性質(zhì)可知,此等差數(shù)列為,s,t,,公差為[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案為【題目點撥】本題主要考查了等差數(shù)列的性質(zhì).考查了學(xué)生創(chuàng)造性思維和解決問題的能力.12、3【解題分析】

令,可得或;當(dāng)時,可解得為函數(shù)一個零點;當(dāng)時,可知,根據(jù)的范圍可求得零點;綜合兩種情況可得零點總個數(shù).【題目詳解】令,可得:或當(dāng)時,或(舍)為函數(shù)的一個零點當(dāng)時,,,為函數(shù)的零點綜上所述,該函數(shù)的零點個數(shù)為:個本題正確結(jié)果:【題目點撥】本題考查函數(shù)零點個數(shù)的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為方程根的個數(shù)的求解,涉及到余弦函數(shù)零點的求解.13、【解題分析】

通過將圖形轉(zhuǎn)化為平面圖形,然后利用放球前后體積等量關(guān)系求得球的體積.【題目詳解】作出相關(guān)圖形,顯然,因此,因此放球前,球O與邊相切于點M,故,則,所以,,所以放球后,而,而,解得.【題目點撥】本題主要考查圓錐體積與球體積的相關(guān)計算,建立體積等量關(guān)系是解決本題的關(guān)鍵,意在考查學(xué)生的劃歸能力,計算能力和分析能力.14、【解題分析】

將變換為,展開利用均值不等式得到答案.【題目詳解】若,且,則時等號成立.故答案為【題目點撥】本題考查了均值不等式,“1”的代換是解題的關(guān)鍵.15、【解題分析】

根據(jù)自變量的取值范圍,利用作差法即可比較大小.【題目詳解】,,,所以當(dāng)時,所以,即,故答案為:.【題目點撥】本題考查了作差法比較整式的大小,屬于基礎(chǔ)題.16、或【解題分析】

當(dāng)直線不過原點時,設(shè)直線的方程為,把點代入求得的值,即可求得直線方程,當(dāng)直線過原點時,直線的方程為,綜合可得答案.【題目詳解】當(dāng)直線不過原點時,設(shè)直線的方程為,把點代入可得:,即此時直線的方程為:當(dāng)直線過原點時,直線的方程為,即綜上可得:滿足條件的直線方程為:或故答案為:或【題目點撥】過原點的直線橫縱截距都為0,在解題的時候容易漏掉.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】試題分析:(1)在中,直接由正弦定理求出;(2)在中,,,可求出,在中,直接由余弦定理可求得.試題解析:(1)在中,據(jù)正弦定理,有.∵,,,∴.(2)由平面幾何知識,可知,在中,∵,,∴.∴.在中,據(jù)余弦定理,有∴點睛:此題考查了正弦定理、余弦定理的應(yīng)用,利用正弦、余弦定理可以很好得解決了三角形的邊角關(guān)系,熟練掌握定理是解本題的關(guān)鍵.在中,涉及三邊三角,知三(除已知三角外)求三,可解出三角形,當(dāng)涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運(yùn)用正弦定理求解;當(dāng)涉及三邊或兩邊及其夾角時,運(yùn)用余弦定理求解.18、(Ⅰ);(Ⅱ).【解題分析】

(Ⅰ)由已知利用同角三角函數(shù)基本關(guān)系式可求,利用誘導(dǎo)公式,二倍角公式即可計算得解;(Ⅱ)由已知利用二倍角的余弦函數(shù)公式可求cos2α的值,根據(jù)同角三角函數(shù)基本關(guān)系式可求tan2α的值,根據(jù)兩角和的正切函數(shù)公式即可計算得解.【題目詳解】(Ⅰ)由已知,得,∴.(Ⅱ)∵,得,∴.【題目點撥】本題主要考查了同角三角函數(shù)基本關(guān)系式,誘導(dǎo)公式,二倍角公式,兩角和的正切函數(shù)公式在三角函數(shù)化簡求值中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.19、(1);(2)【解題分析】

(1)由,,根據(jù)等比數(shù)列的通項公式可解得,,進(jìn)而可得答案;(2)根據(jù)錯位相減法求出,代入不等式得對任意正整數(shù)恒成立,設(shè),對分奇偶討論,可得答案.【題目詳解】(1)因為,所以.又因為,所以,,所以數(shù)列的通項公式為.(2)因為,所以,,兩式相減得,,所以.所以對任意正整數(shù)恒成立.設(shè),易知單調(diào)遞增.當(dāng)為奇數(shù)時,的最小值為,所以,解得;當(dāng)為偶數(shù)時,的最小值為,所以.綜上,,即的取值范圍是.【題目點撥】本題考查了求等比數(shù)列的通項公式,考查了錯位相減法求和,考查了數(shù)列的單調(diào)性,考查了不等式恒成立,屬于中檔題.20、(1);(2).【解題分析】

(1)根據(jù)正弦定理可求,利用特殊角三角函數(shù)可求C;(2)由和的面積公式,可求,再根據(jù)余弦定理求得解出a,b即可求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論