版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆山東省濱州市十二校數(shù)學高一第二學期期末達標檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,則的取值范圍是()A. B. C. D.2.如圖,已知平行四邊形,,則()A. B.C. D.3.在三棱錐中,,二面角的大小為,則三棱錐的外接球的表面積為()A. B. C. D.4.在面積為S的平行四邊形ABCD內(nèi)任取一點P,則三角形PBD的面積大于的概率為()A. B. C. D.5.若直線上存在點滿足則實數(shù)的最大值為A. B. C. D.6.從裝有紅球和綠球的口袋內(nèi)任取2個球(其中紅球和綠球都多于2個),那么互斥而不對立的兩個事件是()A.至少有一個紅球,至少有一個綠球B.恰有一個紅球,恰有兩個綠球C.至少有一個紅球,都是紅球D.至少有一個紅球,都是綠球7.某小組有3名男生和2名女生,從中任選2名學生參加演講比賽,那么互斥而不對立的兩個事件是()A.至少有1名男生和至少有1名女生B.至多有1名男生和都是女生C.至少有1名男生和都是女生D.恰有1名男生和恰有2名男生8.若,,則()A. B. C. D.9.設等差數(shù)列的前n項和為,若,則()A.3 B.4 C.5 D.610.已知等差數(shù)列的公差為2,且是與的等比中項,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓的圓心在直線上,半徑為,若圓上存在點,它到定點的距離與到原點的距離之比為,則圓心的縱坐標的取值范圍是__________.12.若一個圓錐的高和底面直徑相等且它的體積為,則此圓錐的側(cè)面積為______.13.在中,角所對的邊分別為,下列命題正確的是_____________.①總存在某個內(nèi)角,使得;②存在某鈍角,有;③若,則的最小角小于.14.已知實數(shù)滿足,則的最大值為_______.15.某縣現(xiàn)有高中數(shù)學教師500人,統(tǒng)計這500人的學歷情況,得到如下餅狀圖,該縣今年計劃招聘高中數(shù)學新教師,只招聘本科生和研究生,使得招聘后該縣高中數(shù)學專科學歷的教師比例下降到,且研究生的比例保持不變,則該縣今年計劃招聘的研究生人數(shù)為_______.16.若函數(shù)的圖像與直線有且僅有四個不同的交點,則的取值范圍是______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖是某地某公司名員工的月收入后的直方圖.根據(jù)直方圖估計:(1)該公司月收入在元到元之間的人數(shù);(2)該公司員工的月平均收入.18.已知圓:與圓:.(1)求兩圓的公共弦長;(2)過平面上一點向圓和圓各引一條切線,切點分別為,設,求證:平面上存在一定點使得到的距離為定值,并求出該定值.19.已知函數(shù),且函數(shù)是偶函數(shù),設(1)求的解析式;(2)若不等式≥0在區(qū)間(1,e2]上恒成立,求實數(shù)的取值范圍;(3)若方程有三個不同的實數(shù)根,求實數(shù)的取值范圍.20.如果一個數(shù)列從第2項起,每一項與它前一項的差都大于2,則稱這個數(shù)列為“阿當數(shù)列”.(1)若數(shù)列為“阿當數(shù)列”,且,,,求實數(shù)的取值范圍;(2)是否存在首項為1的等差數(shù)列為“阿當數(shù)列”,且其前項和滿足?若存在,請求出的通項公式;若不存在,請說明理由.(3)已知等比數(shù)列的每一項均為正整數(shù),且為“阿當數(shù)列”,,,當數(shù)列不是“阿當數(shù)列”時,試判斷數(shù)列是否為“阿當數(shù)列”,并說明理由.21.已知函數(shù)(1)解關于的不等式;(2)若,令,求函數(shù)的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
由同向不等式的可加性求解即可.【題目詳解】解:因為,所以,又,,所以,故選:B.【題目點撥】本題考查了不等式的性質(zhì),屬基礎題.2、A【解題分析】
根據(jù)平面向量的加法運算,即可得到本題答案.【題目詳解】由題,得.故選:A【題目點撥】本題主要考查平面向量的加法運算,屬基礎題.3、D【解題分析】
取AB中點F,SC中點E,設的外心為,外接圓半徑為三棱錐的外接球球心為,由,在四邊形中,設,外接球半徑為,則則可求,表面積可求【題目詳解】取AB中點F,SC中點E,連接SF,CF,因為則為二面角的平面角,即又設的外心為,外接圓半徑為三棱錐的外接球球心為則面,由在四邊形中,設,外接球半徑為,則則三棱錐的外接球的表面積為故選D【題目點撥】本題考查二面角,三棱錐的外接球,考查空間想象能力,考查正弦定理及運算求解能力,是中檔題4、A【解題分析】
轉(zhuǎn)化條件求出滿足要求的P點的范圍,求出面積比即可得解.【題目詳解】如圖,設P到BD距離為h,A到BD距離為H,則,,滿足條件的點在和中,所求概率.故選:A.【題目點撥】本題考查了幾何概型的概率計算,屬于基礎題.5、B【解題分析】
首先畫出可行域,然后結(jié)合交點坐標平移直線即可確定實數(shù)m的最大值.【題目詳解】不等式組表示的平面區(qū)域如下圖所示,由,得:,即C點坐標為(-1,-2),平移直線x=m,移到C點或C點的左邊時,直線上存在點在平面區(qū)域內(nèi),所以,m≤-1,即實數(shù)的最大值為-1.【題目點撥】本題主要考查線性規(guī)劃及其應用,屬于中等題.6、B【解題分析】由于從口袋中任取2個球有三個事件,恰有一個紅球,恰有兩個綠球,一紅球和一綠球.所以恰有一個紅球,恰有兩個綠球是互斥而不對立的兩個事件.因而應選B.7、D【解題分析】試題分析:A中兩事件不是互斥事件;B中不是互斥事件;C中兩事件既是互斥事件又是對立事件;D中兩事件是互斥但不對立事件考點:互斥事件與對立事件8、D【解題分析】
由于,,,,利用“平方關系”可得,,變形即可得出.【題目詳解】∵,,∴,∴.∵,∴,∵,∴.∴.故選D.【題目點撥】本題考查了兩角和的余弦公式、三角函數(shù)同角基本關系式、拆分角等基礎知識與基本技能方法,屬于中檔題.9、C【解題分析】
由又,可得公差,從而可得結(jié)果.【題目詳解】是等差數(shù)列又,∴公差,,故選C.【題目點撥】本題主要考查等差數(shù)列的通項公式與求和公式的應用,意在考查靈活應用所學知識解答問題的能力,屬于中檔題.10、A【解題分析】
直接利用等差數(shù)列公式和等比中項公式得到答案.【題目詳解】是與的等比中項,故即解得:故選:A【題目點撥】本題考查了等差數(shù)列和等比中項,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】因為圓心在直線上,設圓心,則圓的方程為,設點,因為,所以,化簡得,即,所以點在以為圓心,為半徑的圓上,則,即,整理得,由,得,由,得,所以圓心的縱坐標的取值范圍是.點睛:本題主要考查了圓的方程,動點的軌跡方程、兩圓的位置關系、解不等式等知識的綜合運用,著重考查了轉(zhuǎn)化與化歸思想和學生的運算求解能力,解答中根據(jù)題設條件得到動點的軌跡方程,利用兩圓的位置關系,列出不等式上解答的關鍵.對于直線與圓的位置關系問題,要熟記有關圓的性質(zhì),同時注意數(shù)形結(jié)合思想的靈活運用.12、【解題分析】
先由圓錐的體積公式求出圓錐的底面半徑,再結(jié)合圓錐的側(cè)面積公式求解即可.【題目詳解】解:設圓錐的底面半徑為,則圓錐的高為,母線長為,由圓錐的體積為,則,即,則此圓錐的側(cè)面積為.故答案為:.【題目點撥】本題考查了圓錐的體積公式,重點考查了圓錐的側(cè)面積公式,屬基礎題.13、①③【解題分析】
①中,根據(jù)直角三角形、銳角三角形和鈍角三角形分類討論,得出必要一個角在內(nèi),即可判定;②中,利用兩角和的正切公式,化簡得到,根據(jù)鈍角三角形,即可判定;③中,利用向量的運算,得到,由于不共線,得到,再由余弦定理,即可判定.【題目詳解】由題意,對于①中,在中,當,則,若為直角三角形,則必有一個角在內(nèi);若為銳角三角形,則必有一個內(nèi)角小于等于;若為鈍角三角形,也必有一個角小于內(nèi),所以總存在某個內(nèi)角,使得,所以是正確的;對于②中,在中,由,可得,由為鈍角三角形,所以,所以,所以不正確;對于③中,若,即,即,由于不共線,所以,即,由余弦定理可得,所以最小角小于,所以是正確的.綜上可得,命題正確的是①③.故答案為:①③.【題目點撥】本題以真假命題為載體,考查了正弦、余弦定理的應用,以及向量的運算及應用,其中解答中熟練應用解三角形的知識和向量的運算進行化簡是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.14、【解題分析】
根據(jù)約束條件,畫出可行域,目標函數(shù)可以看成是可行域內(nèi)的點和的連線的斜率,從而找到最大值時的最優(yōu)解,得到最大值.【題目詳解】根據(jù)約束條件可以畫出可行域,如下圖陰影部分所示,目標函數(shù)可以看成是可行域內(nèi)的點和的連線的斜率,因此可得,當在點時,斜率最大聯(lián)立,得即所以此時斜率為,故答案為.【題目點撥】本題考查簡單線性規(guī)劃問題,求目標函數(shù)為分式的形式,關鍵是要對分式形式的轉(zhuǎn)化,屬于中檔題.15、50【解題分析】
先計算出招聘后高中數(shù)學教師總?cè)藬?shù),然后利用比例保持不變,得到該縣今年計劃招聘的研究生人數(shù).【題目詳解】招聘后該縣高中數(shù)學??茖W歷的教師比例下降到,則招聘后,該縣高中數(shù)學教師總?cè)藬?shù)為,招聘后研究生的比例保持不變,該縣今年計劃招聘的研究生人數(shù)為.【題目點撥】本題主要考查學生的閱讀理解能力和分析能力,從題目中提煉關鍵字眼“比例保持不變”是解題的關鍵.16、【解題分析】
將函數(shù)寫成分段函數(shù)的形式,再畫出函數(shù)的圖象,則直線與函數(shù)圖象有四個交點,從而得到的取值范圍.【題目詳解】因為因為所以,所以圖象關于對稱,其圖象如圖所示:因為直線與函數(shù)圖象有四個交點,所以.故答案為:.【題目點撥】本題考查利用三角函數(shù)圖象研究與直線交點個數(shù),考查數(shù)形結(jié)合思想的應用,作圖時發(fā)現(xiàn)圖象關于對稱,是快速畫出圖象的關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】
(1)根據(jù)頻率分布直方圖得出該公司月收入在元到元的員工所占的頻率,再乘以可得出所求結(jié)果;(2)將每個矩形底邊的中點值乘以對應矩形的面積,再將所得的積全部相加可得出該公司員工月收入的平均數(shù).【題目詳解】(1)根據(jù)頻率分布直方圖知,該公司月收入在元到元的員工所占的頻率為:,因此,該公司月收入在元到元之間的人數(shù)為;(2)據(jù)題意該公司員工的平均收入為:(元).【題目點撥】本題考查頻率分布直方圖的應用,考查頻數(shù)的計算以及平均數(shù)的計算,解題時要注意頻數(shù)、平均數(shù)的計算原則,考查計算能力,屬于基礎題.18、(1)(2)【解題分析】
(1)把兩圓方程相減得到公共弦所在直線方程,再根據(jù)點到直線距離公式與圓的垂徑定理求兩圓的公共弦長;(2)根據(jù)圓的切線長與半徑的關系代入化簡即可得到點的軌跡方程,進而求解.【題目詳解】解:(1)由,相減得兩圓的公共弦所在直線方程為:,設(0,0)到的距離為,則所以,公共弦長為所以,公共弦長為.(2)證明:由題設得:化簡得:配方得:所以,存在定點使得到的距離為定值,且該定值為.【題目點撥】本題主要考查圓的應用.求兩圓的公共弦關鍵在求公共弦所在直線方程;求動點與定點距離問題,首先要求出動點的軌跡方程.19、(1);(2);(3).【解題分析】
(1)對稱軸為,對稱軸為,再根據(jù)圖像平移關系求解;(2)分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值;(3)令為整體,轉(zhuǎn)化為二次函數(shù)根的分布問題求解.【題目詳解】(1)函數(shù)的對稱軸為,因為向左平移1個單位得到,且是偶函數(shù),所以,所以.(2)即又,所以,則因為,所以實數(shù)的取值范圍是.(3)方程即化簡得令,則若方程有三個不同的實數(shù)根,則方程必須有兩個不相等的實數(shù)根,且或,令當時,則,即,當時,,,,舍去,綜上,實數(shù)的取值范圍是.【題目點撥】本題考查求函數(shù)解析式,函數(shù)不等式恒成立及函數(shù)零點問題.函數(shù)不等式恒成立通常采用參數(shù)分離法;函數(shù)零點問題要結(jié)合函數(shù)與方程的關系求解.20、(1);(2)不存在,理由見詳解;(3)見詳解.【解題分析】
(1)根據(jù)題意,得到,求解即可得出結(jié)果;(2)先假設存在等差數(shù)列為“阿當數(shù)列”,設公差為,則,根據(jù)等差數(shù)列求和公式,結(jié)合題中條件,得到,即對任意都成立,判斷出,推出矛盾,即可得出結(jié)果;(3)設等比數(shù)列的公比為,根據(jù)為“阿當數(shù)列”,推出在數(shù)列中,為最小項;在數(shù)列中,為最小項;得到,,再由數(shù)列每一項均為正整數(shù),得到,或,;分別討論,和,兩種情況,結(jié)合數(shù)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年南京住建部房屋租賃合同示范文本更新版4篇
- 二零二五年度門窗品牌代理銷售合同2篇
- 2025年度內(nèi)部施工質(zhì)量監(jiān)理合同協(xié)議書
- 二零二五年度旅游大巴租賃與夜間觀光服務合同3篇
- 2025年度棉紗產(chǎn)業(yè)技術創(chuàng)新戰(zhàn)略聯(lián)盟成立合同4篇
- 二零二五年度農(nóng)業(yè)廢棄物資源化利用與農(nóng)產(chǎn)品包裝回收合同4篇
- 2025版新能源車輛融資租賃擔保合同4篇
- 2025衛(wèi)生院與保潔人員勞動合同規(guī)范文本3篇
- 二零二五年度特色苗圃土地租賃與種植技術合作合同3篇
- 2025年度國際工程項目外籍專家聘用合同
- 拉薩市2025屆高三第一次聯(lián)考(一模)語文試卷(含答案解析)
- 《保密法》培訓課件
- 回收二手機免責協(xié)議書模板
- (正式版)JC∕T 60023-2024 石膏條板應用技術規(guī)程
- 人教版高中生物學新舊教材知識差異盤點
- (權(quán)變)領導行為理論
- 2024屆上海市浦東新區(qū)高三二模英語卷
- 2024年智慧工地相關知識考試試題及答案
- GB/T 8005.2-2011鋁及鋁合金術語第2部分:化學分析
- 不動產(chǎn)登記實務培訓教程課件
- 不銹鋼制作合同范本(3篇)
評論
0/150
提交評論