2024屆四川省阿壩市數(shù)學高一下期末達標檢測模擬試題含解析_第1頁
2024屆四川省阿壩市數(shù)學高一下期末達標檢測模擬試題含解析_第2頁
2024屆四川省阿壩市數(shù)學高一下期末達標檢測模擬試題含解析_第3頁
2024屆四川省阿壩市數(shù)學高一下期末達標檢測模擬試題含解析_第4頁
2024屆四川省阿壩市數(shù)學高一下期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川省阿壩市數(shù)學高一下期末達標檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.《五曹算經(jīng)》是我國南北朝時期數(shù)學家甄鸞為各級政府的行政人員編撰的一部實用算術書.其第四卷第九題如下:“今有平地聚粟,下周三丈高四尺,問粟幾何?”其意思為“場院內有圓錐形稻谷堆,底面周長3丈,高4尺,那么這堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的體積約為1.62立方尺,圓周率約為3,估算出堆放的稻谷約有()A.57.08斜 B.171.24斛 C.61.73斛 D.185.19斛2.同時拋擲兩個骰子,則向上的點數(shù)之和是的概率是()A. B. C. D.3.已知兩個正數(shù)a,b滿足,則的最小值是(

)A.2 B.3 C.4 D.54.在△ABC中,AC,BC=1,∠B=45°,則∠A=()A.30° B.60° C.30°或150° D.60°或120°5.為了解名學生的學習情況,采用系統(tǒng)抽樣的方法,從中抽取容量為的樣本,則分段的間隔為()A. B. C. D.6.在中,角A、B、C所對的邊分別為a、b、c,若a、b、c成等比數(shù)列,且,則()A. B. C. D.7.如圖,為正方體,下面結論錯誤的是()A.平面B.C.平面D.異面直線與所成的角為8.在下列區(qū)間中,函數(shù)的零點所在的區(qū)間為()A. B. C. D.9.中,,則()A.5 B.6 C. D.810.在△ABC中,點D在線段BC的延長線上,且=3,點O在線段CD上(與點C,D不重合),若=x+(1-x),則x的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量(1,x2),(﹣2,y2﹣2),若向量,共線,則xy的最大值為_____.12.已知實數(shù)滿足條件,則的最大值是________.13.在梯形中,,,設,,則__________(用向量表示).14.等腰直角中,,CD是AB邊上的高,E是AC邊的中點,現(xiàn)將沿CD翻折成直二面角,則異面直線DE與AB所成角的大小為________.15.如圖,已知圓,六邊形為圓的內接正六邊形,點為邊的中點,當六邊形繞圓心轉動時,的取值范圍是________.16.甲船在島的正南處,,甲船以每小時的速度向正北方向航行,同時乙船自出發(fā)以每小時的速度向北偏東的方向駛去,甲、乙兩船相距最近的距離是_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期及單調遞增區(qū)間;(2)求在區(qū)間上的最大值和最小值.18.設等差數(shù)列的前項和為,且.(I)求數(shù)列的通項公式;(II)設為數(shù)列的前項和,求.19.關于的不等式的解集為.(1)求實數(shù)的值;(2)若,求的值.20.已知數(shù)列,.(1)記,證明:是等比數(shù)列;(2)當是奇數(shù)時,證明:;(3)證明:.21.如圖所示,經(jīng)過村莊有兩條夾角為的公路,根據(jù)規(guī)劃要在兩條公路之間的區(qū)域內修建一工廠,分別在兩條公路邊上建兩個倉庫(異于村莊),要求(單位:千米),記.(1)將用含的關系式表示出來;(2)如何設計(即為多長時),使得工廠產生的噪聲對居民影響最?。垂S與村莊的距離最大)?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

根據(jù)圓錐的周長求出底面半徑,再計算圓錐的體積,從而估算堆放的稻谷數(shù).【題目詳解】設圓錐形稻谷堆的底面半徑為尺,則底面周長為尺,解得尺,又高為尺,所以圓錐的體積為(立方尺);又(斛,所以估算堆放的稻谷約有61.73(斛.故選:.【題目點撥】本題考查了椎體的體積計算問題,也考查了實際應用問題,是基礎題.2、C【解題分析】

由題意可知,基本事件總數(shù)為,然后列舉出事件“同時拋擲兩個骰子,向上的點數(shù)之和是”所包含的基本事件,利用古典概型的概率公式可計算出所求事件的概率.【題目詳解】同時拋擲兩個骰子,共有個基本事件,事件“同時拋擲兩個骰子,向上的點數(shù)之和是”所包含的基本事件有:、、、、,共個基本事件.因此,所求事件的概率為.故選:C.【題目點撥】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎題.3、D【解題分析】

根據(jù)題意,分析可得,對其變形可得,由基本不等式分析可得答案.【題目詳解】解:根據(jù)題意,正數(shù),滿足,則;即的最小值是;故選:.【題目點撥】本題考查基本不等式的性質以及應用,關鍵是掌握基本不等式應用的條件.4、A【解題分析】

直接利用正弦定理求出sinA的大小,根據(jù)大邊對大角可求A為銳角,即可得解A的值.【題目詳解】因為:△ABC中,BC=1,AC,∠B=45°,所以:,sinA.因為:BC<AC,可得:A為銳角,所以:A=30°.故選:A.【點評】本題考查正弦定理在解三角形中的應用,考查計算能力,屬于基礎題.5、C【解題分析】試題分析:由題意知,分段間隔為,故選C.考點:本題考查系統(tǒng)抽樣的定義,屬于中等題.6、A【解題分析】

先由a、b、c成等比數(shù)列,得到,再由題中條件,結合余弦定理,即可求出結果.【題目詳解】解:a、b、c成等比數(shù)列,所以,?所以,由余弦定理可知,又,所以.故選A.【題目點撥】本題主要考查解三角形,熟記余弦定理即可,屬于??碱}型.7、D【解題分析】

在正方體中與

平行,因此有與平面

平行,A正確;在平面

內的射影垂直于,因此有,B正確;與B同理有與

垂直,從而

平面

,C正確;由知與所成角為45°,D錯.故選D.8、B【解題分析】

由函數(shù)的解析式,再根據(jù)函數(shù)零點的存在定理可得函數(shù)的零點所在的區(qū)間.【題目詳解】函數(shù)的零點所在的區(qū)間即函數(shù)與的交點所在區(qū)間.由函數(shù)與在定義域上只有一個交點,如圖.函數(shù)在定義域上只有一個零點.又,所以.所以的零點在上故選:B【題目點撥】本題主要考查求函數(shù)的零點所在區(qū)間,函數(shù)零點的存在定理,屬于基礎題.9、D【解題分析】

根據(jù)余弦定理,可求邊長.【題目詳解】,代入數(shù)據(jù),化解為解得或(舍)故選D.【題目點撥】本題考查了已知兩邊及其一邊所對角,求另一邊,這種題型用余弦定理,屬于基礎題型.10、D【解題分析】

根據(jù)所給的數(shù)量關系,寫出要求向量的表示式,注意共線的向量之間的三分之一關系,根據(jù)表示的關系式和所給的關系式進行比較,得到結果.【題目詳解】如圖.依題意,設=λ,其中1<λ<,則有=+=+λ=+λ(-)=(1-λ)+λ.又=x+(1-x),且不共線,于是有x=1-λ∈,即x的取值范圍是.故選D.【題目點撥】本題考查向量的基本定理,是一個基礎題,這種題目可以出現(xiàn)在解答題目中,也可以單獨出現(xiàn),注意表示向量時,一般從向量的起點出發(fā),繞著圖形的邊到終點.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

由題意利用兩個向量共線的性質,兩個向量坐標形式的運算,可得,再利用基本不等式,求得的最大值.【題目詳解】向量,,若向量,共線,則,,即,當且僅當,時,取等號.故的最大值為,故答案為:.【題目點撥】本題主要考查兩個向量共線的性質,考查兩個向量坐標形式的運算和基本不等式,屬于基礎題.12、8【解題分析】

畫出滿足約束條件的可行域,利用目標函數(shù)的幾何意義求解最大值即可.【題目詳解】實數(shù),滿足條件的可行域如下圖所示:將目標函數(shù)變形為:,則要求的最大值,即使直線的截距最大,由圖可知,直線過點時截距最大,,故答案為:8.【題目點撥】本題考查線性規(guī)劃的簡單應用,解題關鍵是明確目標函數(shù)的幾何意義.13、【解題分析】

根據(jù)向量減法運算得結果.【題目詳解】利用向量的三角形法則,可得,,又,,則,.故答案為.【題目點撥】本題考查向量表示,考查基本化解能力14、【解題分析】

取的中點,連接,則與所成角即為與所成角,根據(jù)已知可得,,可以判斷三角形為等邊三角形,進而求出異面直線直線DE與AB所成角.【題目詳解】取的中點,連接,則,直線DE與AB所成角即為與所成角,,,,,,即三角形為等邊三角形,異面直線DE與AB所成角的大小為.故答案為:【題目點撥】本題考查立體幾何中的翻折問題,考查了異面直線所成的角,考查了學生的空間想象能力,屬于基礎題.15、【解題分析】

先求出,再化簡得即得的取值范圍.【題目詳解】由題得OM=,由題得由題得..所以的取值范圍是.故答案為【題目點撥】本題主要考查平面向量的運算和數(shù)量積運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.16、【解題分析】

根據(jù)條件畫出示意圖,在三角形中利用余弦定理求解相距的距離,利用二次函數(shù)對稱軸及可求解出最值.【題目詳解】假設經(jīng)過小時兩船相距最近,甲、乙分別行至,,如圖所示,可知,,,.當小時時甲、乙兩船相距最近,最近距離為.【題目點撥】本題考查解三角形的實際應用,難度較易.關鍵是通過題意將示意圖畫出來,然后將待求量用未知數(shù)表示,最后利用函數(shù)思想求最值.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);單調遞增區(qū)間為:;(2)最大值;最小值.【解題分析】

(1)先將函數(shù)化簡整理,得到,由得到最小正周期;根據(jù)正弦函數(shù)的對稱軸,即可列式,求出對稱軸;(2)先由,得到,根據(jù)正弦函數(shù)的性質,即可得出結果.【題目詳解】(1)因為,所以最小正周期為:;由得,即單調遞增區(qū)間是:;(2)因為,所以,因此,當即時,取最小值;當即時,取最大值;【題目點撥】本題主要考查正弦型三角函數(shù)的周期、對稱軸,以及給定區(qū)間的最值問題,熟記正弦函數(shù)的性質,以及輔助角公式即可,屬于??碱}型.18、(I);(II).【解題分析】

(I)根據(jù)已知的兩個條件求出公差d,即得數(shù)列的通項公式;(II)先求出,再利用裂項相消法求和得解.【題目詳解】(I)由題得,所以等差數(shù)列的通項為;(II)因為,所以.【題目點撥】本題主要考查等差數(shù)列的通項的求法,考查等差數(shù)列前n項和基本量的計算,考查裂項相消法求和,意在考查學生對這些知識的理解掌握水平和分析推理能力.19、(1);(2).【解題分析】

(1)由行列式的運算法則,得原不等式即,而不等式的解集為,采用比較系數(shù)法,即可得到實數(shù)的值;(2)把代入,求得,進一步得到,再由兩角差的正切公式即可求解.【題目詳解】(1)原不等式等價于,由題意得不等式的解集為,故是方程的兩個根,代入解得,所以實數(shù)的值為.(2)由,得,即.,【題目點撥】本題考查了行列式的運算法則、由一元二次不等式的解集求參數(shù)值、二倍角的正切公式以及兩角差的正切公式,需熟記公式,屬于基礎題.20、(1)見解析;(2)見解析;(3)見解析【解題分析】

(1)對遞推關系進行變形得,從而證明是等比數(shù)列;(2)由(1)得,代入所證式子,再利用放縮法進行證明;(3)由(2)可知,對分偶數(shù)和奇數(shù)計論,放縮法和等比數(shù)列求和,即可證明結論.【題目詳解】(1)∵,∴,且所以,數(shù)列是首項為,公比為3的等比數(shù)列.(2)由(1)可知當k是奇數(shù)時,(3)由(2)可知,當為偶數(shù)時,當為奇數(shù)時,所以.【題目點撥】本題考查等比數(shù)列的定義證明、等比數(shù)列前項和、不等式的放縮法證明,考查轉化與化歸思想、分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論