版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆遼寧省沈陽市實驗中學數(shù)學高一第二學期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.命題“”的否定是()A., B.,C., D.,2.若圓的圓心在第一象限,則直線一定不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.兩條平行直線與間的距離等于()A. B.2 C. D.44.在平面直角坐標系中,已知四邊形是平行四邊形,,,則()A. B. C. D.5.一個四面體的三視圖如圖所示,則該四面體的表面積是()A. B.C. D.6.等差數(shù)列中,,則().A.110 B.120 C.130 D.1407.已知,為直線,,為平面,下列命題正確的是()A.若,,則B.若,,則與為異面直線C.若,,,則D.若,,,則8.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位9.已知三棱錐中,,,則三棱錐的外接球的表面積為()A. B.4 C. D.10.已知實數(shù)x,y滿足約束條件,那么目標函數(shù)的最大值是()A.0 B.1 C. D.10二、填空題:本大題共6小題,每小題5分,共30分。11.數(shù)列的前項和為,若對任意,都有,則數(shù)列的前項和為________12.等差數(shù)列{}前n項和為.已知+-=0,=38,則m=_______.13.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一數(shù)值也可以近似地用表示,則_____.14.兩圓交于點和,兩圓的圓心都在直線上,則____________;15.已知圓錐的底面半徑為3,體積是,則圓錐側面積等于___________.16.函數(shù)的定義域為___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在正方體中,是的中點.(1)求證:平面;(2)求證:平面平面.18.已知函數(shù)(,)為奇函數(shù),且相鄰兩對稱軸間的距離為.(1)當時,求的單調遞減區(qū)間;(2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標縮短到原來的(縱坐標不變),得到函數(shù)的圖象.當時,求函數(shù)的值域.19.某校為了了解甲、乙兩班的數(shù)學學習情況,從兩班各抽出10名學生進行數(shù)學水平測試,成績如下(單位:分):甲班:82848589798091897974乙班:90768681848786828583(1)求兩個樣本的平均數(shù);(2)求兩個樣本的方差和標準差;(3)試分析比較兩個班的學習情況.20.中,角所對的邊分別為,已知.(1)求角的大??;(2)若,求面積的最大值.21.已知角的終邊經過點.(1)求的值;(2)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
含有一個量詞的命題的否定,注意“改量詞,否結論”.【題目詳解】改為,改成,則有:.故選:B.【題目點撥】本題考查含一個量詞的命題的否定,難度較易.2、A【解題分析】
由圓心位置確定,的正負,再結合一次函數(shù)圖像即可判斷出結果.【題目詳解】因為圓的圓心坐標為,由圓心在第一象限可得,所以直線的斜率,軸上的截距為,所以直線不過第一象限.【題目點撥】本題主要考查一次函數(shù)的圖像,屬于基礎題型.3、C【解題分析】
先把直線方程中未知數(shù)的系數(shù)化為相同的,再利用兩條平行直線間的距離公式,求得結果.【題目詳解】解:兩條平行直線與間,即兩條平行直線與,故它們之間的距離為,故選:.【題目點撥】本題主要考查兩條平行直線間的距離公式應用,注意未知數(shù)的系數(shù)必需相同,屬于基礎題.4、D【解題分析】因為四邊形是平行四邊形,所以,所以,故選D.考點:1、平面向量的加法運算;2、平面向量數(shù)量積的坐標運算.5、B【解題分析】
試題分析:由三視圖可知,該幾何體是如下圖所示的三棱錐,其中平面平面,,且,,所以,與均為正三角形,且邊長為,所以,故該三棱錐的表面各為,故選B.考點:1.三視圖;2.多面體的表面積與體積.6、B【解題分析】
直接運用等差數(shù)列的下標關系即可求出的值.【題目詳解】因為數(shù)列是等差數(shù)列,所以,因此,故本題選B.【題目點撥】本題考查了等差數(shù)列下標性質,考查了數(shù)學運算能力.7、D【解題分析】
利用空間中線線、線面、面面間的位置關系對選項逐一判斷即可.【題目詳解】由,為直線,,為平面,知:在A中,若,,則與相交、平行或異面,故A錯誤;在B中,若,,則與相交、平行或異面,故B錯誤;在C中,若,,,則與相交、平行或異面,故C錯誤;在D中,若,,,則由線面垂直、面面平行的性質定理得,故D正確.故選:D.【題目點撥】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,屬于基礎題.8、D【解題分析】
根據(jù)三角函數(shù)圖象的平移變換可直接得到圖象變換的過程.【題目詳解】因為,所以向右平移個單位即可得到的圖象.故選:D.【題目點撥】本題考查三角函數(shù)圖象的平移變換,難度較易.注意左右平移時對應的規(guī)律:左加右減.9、B【解題分析】
依據(jù)題中數(shù)據(jù),利用勾股定理可判斷出從而可得三棱錐各面都為直角三角形,進而可知外接圓的直徑,即可求出三棱錐的外接球的表面積【題目詳解】如圖,因為,又,,從而可得三棱錐各面都為直角三角形,CD是三棱錐的外接球的直徑,在中,,,即,,故選B.【題目點撥】本題主要考查學生空間想象以及數(shù)學建模能力,能夠依據(jù)條件建立合適的模型是解題的關鍵.10、D【解題分析】
根據(jù)約束條件,畫出可行域,再平移目標函數(shù)所在的直線,找到最優(yōu)點,將最優(yōu)點的坐標代入目標函數(shù)求最值.【題目詳解】畫出可行域(如圖),平移直線,當目標直線過點時,目標函數(shù)取得最大值,.故選:D【題目點撥】本題主要考查線性規(guī)劃求最值問題,還考查了數(shù)形結合的思想,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
根據(jù)數(shù)列的遞推公式,求得,再結合等差等比數(shù)列的前項和公式,即可求解,得到答案.【題目詳解】由題意,數(shù)列滿足,…①,…②由①-②,可得,即當時,,所以,則數(shù)列的前項和為.【題目點撥】本題主要考查了數(shù)列的遞推關系式的應用,以及等差、等比數(shù)列的前項和的應用,其中解答中熟練應用熟練的遞推公式得到數(shù)列的通項公式,再結合等差、等比數(shù)列的前項和公式的準確計算是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.12、10【解題分析】
根據(jù)等差數(shù)列的性質,可得:+=2,又+-=0,則2=,解得=0(舍去)或=2.則,,所以m=10.13、【解題分析】
代入分式利用同角三角函數(shù)的平方關系、二倍角公式及三角函數(shù)誘導公式化簡即可.【題目詳解】.故答案為:2【題目點撥】本題考查同角三角函數(shù)的平方關系、二倍角公式及三角函數(shù)誘導公式,屬于基礎題.14、【解題分析】
由圓的性質可知,直線與直線垂直,,直線的斜率,,解得.故填:3.【題目點撥】本題考查了相交圓的幾何性質,和直線垂直的關系,考查數(shù)形結合的思想與計算能力,屬于基礎題.15、【解題分析】試題分析:求圓錐側面積必須先求圓錐母線,既然已知體積,那么可先求出圓錐的高,再利用圓錐的性質(圓錐的高,底面半徑,母線組成直角三角形)可得母線,,,,.考點:圓錐的體積與面積公式,圓錐的性質.16、【解題分析】試題分析:由題設可得,解之得,故應填答案.考點:函數(shù)定義域的求法及運用.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解題分析】試題分析:(1)設,連接,因為O,E分別為AC,中點,所以(2)平面,所以平面平面考點:線面平行垂直的判定點評:平面內一直線與平面外一直線平行,則線面平行;直線垂直于平面內兩相交直線則直線垂直于平面,進而得到兩面垂直18、(1),](2)值域為[,].【解題分析】
(1)利用三角恒等變換化簡的解析式,根據(jù)條件,可求出周期和,結合奇函數(shù)性質,求出,再用整體代入法求出內的遞減區(qū)間;(2)利用函數(shù)的圖象變換規(guī)律,求出的解析式,再利用正弦函數(shù)定義域,即可求出時的值域.【題目詳解】解:(1)由題意得,因為相鄰兩對稱軸之間距離為,所以,又因為函數(shù)為奇函數(shù),所以,∴,因為,所以故函數(shù)令.得.令得,因為,所以函數(shù)的單調遞減區(qū)間為,](2)由題意可得,因為,所以所以,.即函數(shù)的值域為[,].【題目點撥】本題主要考查正弦函數(shù)在給定區(qū)間內的單調性和值域,包括周期性,奇偶性,單調性和最值,還涉及三角函數(shù)圖像的平移伸縮和三角恒等變換中的輔助角公式.19、(1),;(2),,;(3)乙班的總體學習情況比甲班好【解題分析】試題分析:每組樣本數(shù)據(jù)有10個,求樣本的平均數(shù)利用平均數(shù)公式,10個數(shù)的平均數(shù)等于這10個數(shù)的和除以10;比較平均分的大小可以看出兩個班學生平均水平的高低,求樣本的方差只需使用方差公式,求這10個數(shù)與平均數(shù)的差的平方方和再除以10;比較兩組數(shù)據(jù)方差的大小就可得出兩組數(shù)據(jù)的標準差的大小,標準差較小者成績較穩(wěn)定。試題解析:(1)=×(82+1+85+89+79+80+91+89+79+74)=83.2,=×(90+76+86+81+1+87+86+82+85+83)=1.(2)=×[(82-83.2)2+(1-83.2)2+(85-83.2)2+(89-83.2)2+(79-83.2)2+(80-83.2)2+(91-83.2)2+(89-83.2)2+(79-83.2)2+(74-83.2)2]=26.36,=[(90-1)2+(76-1)2+(86-1)2+(81-1)2+(1-1)2+(87-1)2+(86-1)2+(82-1)2+(85-1)2+(83-1)2]=13.2,則s甲=≈5.13,s乙=≈3.2.(3)由于,則甲班比乙班平均水平低.由于,則甲班沒有乙班穩(wěn)定.所以乙班的總體學習情況比甲班好【題目點撥】怎樣求樣本的平均數(shù),n個數(shù)的平均數(shù)等于這n個數(shù)的和除以n;比較平均數(shù)的大小可以看出兩個樣本平均水平的高低,怎樣求樣本的方差,就是求這n個數(shù)與平均數(shù)的差的平方方和再除以n;比較兩組數(shù)據(jù)方差的大小就可得出兩組數(shù)據(jù)的標準差的大小,標準差較小者成績較穩(wěn)定。20、(1);(2).【解題分析】
(1)由正弦定理化邊為角,再由同角間的三角函數(shù)關系化簡可求得;(2)利用余弦定理得出的等式,由基本不等式求得的最大值,可得面積最大值.【題目詳解】(1)∵,∴,又,∴,即,∴;(2)由(1),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 調研報告:全球及中國新型穿戴設備市場全景圖譜 出貨量穩(wěn)定增長
- 《工作與健康》課件
- 單位管理制度展示大全【人力資源管理篇】十篇
- 單位管理制度展示大合集【人力資源管理】十篇
- 策略深度報告:1月度金股春季躁動的“科技成長”和“內循環(huán)”
- 【大學課件】市場競爭策略
- 特種設備安全管理人員和操作人員培訓課件
- 2025年中國碘佛醇注射液行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y戰(zhàn)略咨詢報告
- 中國可信計算機行業(yè)發(fā)展趨勢預測及投資戰(zhàn)略咨詢報告
- 穿墻螺栓行業(yè)市場發(fā)展及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 研究生年終總結研一
- 絲綢之路上的民族學習通超星期末考試答案章節(jié)答案2024年
- 山東省濟寧市2023-2024學年第一學期期中質量檢測高二數(shù)學試題含答案
- 醫(yī)療器械委托生產前綜合評價報告
- 2024年自然資源部直屬企事業(yè)單位公開招聘歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 2023年吉林省中考滿分作文《感動盈懷歲月暖》2
- 廣東深圳市龍崗區(qū)產服集團招聘筆試題庫2024
- 公路施工表格
- 2024至2030年中國昆明市酒店行業(yè)發(fā)展監(jiān)測及市場發(fā)展?jié)摿︻A測報告
- 《中國心力衰竭診斷和治療指南2024》解讀(總)
- 科學新課程標準中核心素養(yǎng)的內涵解讀及實施方略講解課件
評論
0/150
提交評論