




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市浦光中學(xué)2024屆數(shù)學(xué)高一上期末注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.在平面直角坐標系中,若角的終邊經(jīng)過點,則()A. B.C. D.2.設(shè),,則()A.且 B.且C.且 D.且3.已知函數(shù),下面關(guān)于說法正確的個數(shù)是()①的圖象關(guān)于原點對稱②的圖象關(guān)于y軸對稱③的值域為④在定義域上單調(diào)遞減A.1 B.2C.3 D.44.已知不等式的解集為,則不等式的解集是()A. B.C.或 D.或5.以下給出的是計算的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是A.B.C.D.6.已知函數(shù)是定義在R上的偶函數(shù),若對于任意不等實數(shù),,,不等式恒成立,則不等式的解集為()A. B.C. D.7.已知函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍為()A. B.C. D.8.已知函數(shù),若,則的值為A. B.C.-1 D.19.“是鈍角”是“是第二象限角”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.設(shè)集合,則A. B.C. D.11.已知,且,則的最小值為A. B.C. D.12.直線與圓交點的個數(shù)為A.2個 B.1個C.0個 D.不確定二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.若函數(shù)y=f(x)是函數(shù)y=2x的反函數(shù),則f(2)=______.14.定義:如果函數(shù)在定義域內(nèi)給定區(qū)間上存在,滿足,則稱函數(shù)是上的“平均值函數(shù)”,是它的一個均值點.若函數(shù)是上的平均值函數(shù),則實數(shù)的取值范圍是____15.在平面直角坐標系xOy中,已知圓有且僅有三個點到直線l:的距離為1,則實數(shù)c的取值集合是______16.在中,三個內(nèi)角所對的邊分別為,,,,且,則的取值范圍為__________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.某學(xué)校對高一某班的名同學(xué)的身高(單位:)進行了一次測量,將得到的數(shù)據(jù)進行適當分組后(每組為左閉右開區(qū)間),畫出如圖所示的頻率分布直方圖.(1)求直方圖中的值,估計全班同學(xué)身高的中位數(shù);(2)若采用分層抽樣的方法從全班同學(xué)中抽取了名身高在內(nèi)的同學(xué),再從這名同學(xué)中任選名去參加跑步比賽,求選出的名同學(xué)中恰有名同學(xué)身高在內(nèi)的概率.18.某校高一(1)班共有學(xué)生50人,據(jù)統(tǒng)計原來每人每年用于購買飲料的平均支出是元,經(jīng)測算和市場調(diào)查,若該班學(xué)生集體改飲某品牌的桶裝純凈水,則年總費用由兩部分組成:一部分是購買純凈水的費用,另一部分是其他費用780元,其中純凈水的銷售價(元/桶)與年購買總量(桶)之間滿足如圖所示的關(guān)系.(Ⅰ)求與的函數(shù)關(guān)系;(Ⅱ)當為120時,若該班每年需要純凈水380桶,請你根據(jù)提供的信息分析一下:該班學(xué)生集體改飲桶裝純凈水與個人買飲料相比,哪一種花錢更少?19.已知函數(shù)的圖象關(guān)于原點對稱.(Ⅰ)求,的值;(Ⅱ)若函數(shù)在內(nèi)存在零點,求實數(shù)的取值范圍.20.在中,角所對的邊分別為,滿足.(1)求角的大??;(2)若,且,求的面積21.如圖,在四棱錐中,底面是菱形,,且側(cè)面平面,點是的中點(1)求證:(2)若,求證:平面平面22.已知函數(shù)f(x)的圖像關(guān)于原點對稱,當時,.(1)求函數(shù)f(x)的解析式;(2)求函數(shù)f(x)的單調(diào)區(qū)間.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】根據(jù)三角函數(shù)定義求解即可.【詳解】角的終邊經(jīng)過點,即,則.故選:A.2、B【解析】容易得出,,即得出,,從而得出,【詳解】,.又,即,,,故選B.【點睛】本題考查對數(shù)函數(shù)單調(diào)性的應(yīng)用,求解時注意總結(jié)規(guī)律,即對數(shù)的底數(shù)和真數(shù)同時大于1或同時大于0小于1,函數(shù)值大于0;若一個大于1,另一個大于0小于1,函數(shù)值小于03、B【解析】根據(jù)函數(shù)的奇偶性定義判斷為奇函數(shù)可得對稱性,化簡解析式,根據(jù)指數(shù)函數(shù)的性質(zhì)可得單調(diào)性和值域.【詳解】因為的定義域為,,即函數(shù)為奇函數(shù),所以函數(shù)的圖象關(guān)于原點對稱,即①正確,②不正確;因為,由于單調(diào)遞減,所以單調(diào)遞增,故④錯誤;因為,所以,,即函數(shù)的值域為,故③正確,即正確的個數(shù)為2個,故選:B.【點睛】關(guān)鍵點點睛:理解函數(shù)的奇偶性和常見函數(shù)單調(diào)性簡單的判斷方式.4、A【解析】由不等式的解集為,可得的根為,由韋達定理可得的值,代入不等式解出其解集即可.【詳解】的解集為,則的根為,即,,解得,則不等式可化為,即為,解得或,故選:A.5、A【解析】分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出S的值【詳解】程序運行過程中,各變量值如下表所示:第一圈:S=1,k=2,第二圈:S=1+,k=3,第三圈:S=1++,k=4,…依此類推,第十圈:S=1+,k=11退出循環(huán)其中判斷框內(nèi)應(yīng)填入的條件是:k≤10,故選A【點睛】算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個熱點,應(yīng)高度重視.程序填空也是重要的考試題型,這種題考試的重點有:①分支的條件②循環(huán)的條件③變量的賦值④變量的輸出.其中前兩點考試的概率更大.此種題型的易忽略點是:不能準確理解流程圖的含義而導(dǎo)致錯誤6、C【解析】由條件對于任意不等實數(shù),,不等式恒成立可得函數(shù)在上為減函數(shù),利用函數(shù)性質(zhì)化簡不等式求其解.【詳解】∵函數(shù)是定義在R上的偶函數(shù),∴,∴不等式可化為∵對于任意不等實數(shù),,不等式恒成立,∴函數(shù)在上為減函數(shù),又,∴,∴,∴不等式的解集為故選:C.7、A【解析】先由題意,求出函數(shù)的單調(diào)遞減區(qū)間,再由題中條件,列出不等式組求解,即可得出結(jié)果.【詳解】由題意,令,則,即函數(shù)的單調(diào)遞減區(qū)間為,因為函數(shù)在區(qū)間上單調(diào)遞減,所以,解得,所以,.故選:A.【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是用不等式法求函數(shù)的單調(diào)遞減區(qū)間時,應(yīng)該令,且該函數(shù)的周期應(yīng)為,則.8、D【解析】,選D點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)的形式時,應(yīng)從內(nèi)到外依次求值.(2)求某條件下自變量的值,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記代入檢驗,看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.9、A【解析】根據(jù)鈍角和第二象限角的定義,結(jié)合充分性、必要性的定義進行判斷即可.【詳解】因為是鈍角,所以,因此是第二象限角,當是第二象限角時,例如是第二象限角,但是顯然不成立,所以“是鈍角”是“是第二象限角”的充分不必要條件,故選:A10、B【解析】,選B.【考點】集合的運算【名師點睛】集合的交、并、補運算問題,應(yīng)先把集合化簡再計算,常常借助數(shù)軸或韋恩圖進行處理.11、C【解析】運用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]?()﹣1,化簡整理再由基本不等式即可得到最小值【詳解】由x+y=(x+1)+y﹣1=[(x+1)+y]?1﹣1=[(x+1)+y]?2()﹣1=2(21≥3+47當且僅當x,y=4取得最小值7故選C【點睛】本題考查基本不等式的運用:求最值,注意乘1法和滿足的條件:一正二定三等,考查運算能力,屬于中檔題12、A【解析】化為點斜式:,顯然直線過定點,且定點在圓內(nèi)∴直線與圓相交,故選A二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、1【解析】根據(jù)反函數(shù)的定義即可求解.【詳解】由題知y=f(x)=,∴f(2)=1.故答案為:1.14、##,##【解析】根據(jù)題意,方程,即在內(nèi)有實數(shù)根,若函數(shù)在內(nèi)有零點.首先滿足,解得,或.對稱軸為.對分類討論即可得出【詳解】解:根據(jù)題意,若函數(shù)是,上的平均值函數(shù),則方程,即在內(nèi)有實數(shù)根,若函數(shù)在內(nèi)有零點則,解得,或(1),.對稱軸:①時,,,(1),因此此時函數(shù)在內(nèi)一定有零點.滿足條件②時,,由于(1),因此函數(shù)在內(nèi)不可能有零點,舍去綜上可得:實數(shù)的取值范圍是,故答案為:,15、【解析】因為圓心到直線的距離為,所以由題意得考點:點到直線距離16、【解析】∵,,且,∴,∴,∴在中,由正弦定理得,∴,∴,∵,∴∴∴的取值范圍為答案:三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1),中位數(shù)為(2)【解析】(1)利用頻率分布直方圖中所有矩形的面積之和為可求得的值,設(shè)中位數(shù)為,利用中位數(shù)左邊的矩形面積之和為列等式可求得的值;(2)分析可知所抽取的名學(xué)生,身高在的學(xué)生人數(shù)為,分別記為、、,身高在的學(xué)生人數(shù)為,記為,列舉出所有的基本事件,確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由圖可得,解得.設(shè)中位數(shù)為,前兩個矩形的面積之和為,前三個矩形的面積之和為,可知,所以,,解得,故估計全班同學(xué)身高的中位數(shù)為.【小問2詳解】解:所抽取的名學(xué)生,身高在的學(xué)生人數(shù)為,身高在的學(xué)生人數(shù)為,設(shè)身高在內(nèi)的同學(xué)分別為、、,身高在內(nèi)的同學(xué)為,則這個試驗的樣本空間可記為,共包含個樣本點,記事件選出的名同學(xué)中恰有一名同學(xué)身高在內(nèi).則事件包含的基本事件有、、,共種,故.18、(Ⅰ);(Ⅱ)該班學(xué)生集體改飲桶裝純凈水花錢更少.【解析】(Ⅰ)根據(jù)題意設(shè)出直線方程,再代入圖示數(shù)據(jù),即可得出與的函數(shù)關(guān)系;(Ⅱ)分別求出兩種情形下的年花費費用,進行比較即可.【詳解】(Ⅰ)根據(jù)題意,可設(shè),時,;時,,,解得,所以與的函數(shù)關(guān)系為:;(Ⅱ)該班學(xué)生購買飲料的年費用為(元),由(Ⅰ)知,當時,,故該班學(xué)生購買純凈水的年費用為:(元),比購買飲料花費少,故該班學(xué)生集體改飲桶裝純凈水花錢更少.【點睛】本題考查函數(shù)模型的選取及實際應(yīng)用,屬于簡單題.19、(1),;(2)【解析】(Ⅰ)題意說明函數(shù)是奇函數(shù),因此有恒成立,由恒等式知識可得關(guān)于的方程組,從而可解得;(Ⅱ)把函數(shù)化簡得,這樣問題轉(zhuǎn)化為方程在內(nèi)有解,也即在內(nèi)有解,只要作為函數(shù),求出函數(shù)的值域即得試題解析:(Ⅰ)函數(shù)的圖象關(guān)于原點對稱,所以,所以,所以,即,所以,解得,;(Ⅱ)由,由題設(shè)知在內(nèi)有解,即方程在內(nèi)有解.在內(nèi)遞增,得.所以當時,函數(shù)在內(nèi)存在零點.20、(1)(2)【解析】(1)利用正弦定理可以得到,即可求出角的大??;(2)利用余弦定理并結(jié)合(1)中的結(jié)論,可以求出,代入三角形面積公式即可【詳解】(1)由于,結(jié)合正弦定理可得,由于,可得,即,因為,故.(2)由,,且,代入余弦定理,即,解得,則的面積.【點睛】本題考查了正弦定理和余弦定理的應(yīng)用,屬于中檔題21、(1)見解析;(2)見解析【解析】分析:(1)可根據(jù)為等腰三角形得到,再根據(jù)平面平面可以得到平面,故.(2)因及是中點,從而有,再根據(jù)平面得到,從而平面,故平面平面.詳解:(1)證明:因為,點是棱的中點,所以,平面.因為平面平面,平面平面,平面,所以平面,又因為平面,所以.(2)證明:因為,點是的中點,所以.由(1)可得,又因為,所以平面,又因為平面,所以平面平面點睛:線線垂直的證明,可歸結(jié)為線面垂直,也可以轉(zhuǎn)化到平面中的某
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45227-2025化工園區(qū)封閉管理系統(tǒng)技術(shù)要求
- GB/T 45126-2025鋼渣碳酸化固定二氧化碳含量的測定方法
- 出攤貨架轉(zhuǎn)讓合同范本
- 農(nóng)村田地征用合同范本
- 臨時股合同范本
- 代課老師合同范本
- 冰箱采購談判合同范本
- 半永久加盟合同范本
- 健身器合同范本
- 養(yǎng)殖鴿子合作合同范本
- 《水利工程質(zhì)量檢測管理規(guī)定》知識培訓(xùn)
- 2025年02月貴州省司法廳所屬事業(yè)單位公開招聘2人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025年校長春季開學(xué)思政第一課講話稿1720字例文【供參考】
- 2025年01月福建省福利彩票發(fā)行中心片區(qū)管理員招考筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025至2030年中國單板電磁制動器數(shù)據(jù)監(jiān)測研究報告
- 2024年07月國新國證期貨有限責(zé)任公司(海南)2024年招考2名工作人員筆試歷年參考題庫附帶答案詳解
- 人教版數(shù)學(xué)八年級下冊 第17章 勾股定理 單元測試(含答案)
- 法規(guī)解讀丨2024新版《突發(fā)事件應(yīng)對法》及其應(yīng)用案例
- JGJ46-2024 建筑與市政工程施工現(xiàn)場臨時用電安全技術(shù)標準
- 肺炎的中醫(yī)護理方案
- 2024年世界職業(yè)院校技能大賽高職組“關(guān)務(wù)實務(wù)組”賽項參考試題庫(含答案)
評論
0/150
提交評論