版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
最新人教版七年級(jí)數(shù)學(xué)上冊(cè)培優(yōu)輔導(dǎo)講義第1講與有理數(shù)有關(guān)的概念考點(diǎn)·方法·破譯1.了解負(fù)數(shù)的產(chǎn)生過程,能夠用正、負(fù)數(shù)表示具有相反意義的量.2.會(huì)進(jìn)行有理的分類,體會(huì)并運(yùn)用數(shù)學(xué)中的分類思想.3.理解數(shù)軸、相反數(shù)、絕對(duì)值、倒數(shù)的意義.會(huì)用數(shù)軸比較兩個(gè)有理數(shù)的大小,會(huì)求一個(gè)數(shù)的相反數(shù)、絕對(duì)值、倒數(shù).經(jīng)典·考題·賞析【例1】寫出下列各語句的實(shí)際意義⑴向前-7米⑵收人-50元⑶體重增加-3千克【解法指導(dǎo)】用正、負(fù)數(shù)表示實(shí)際問題中具有相反意義的量.而相反意義的量應(yīng)該包合兩個(gè)要素:一是它們的意義相反.二是它們具有數(shù)量.而且必須是同類兩,如“向前與自后、收入與支出、增加與減少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶體重增加-3千克表示體重減小3千克.【變式題組】01.如果+10%表示增加10%,那么減少8%可以記作()A.-18%B.-8%C.+2%D.+8%02.(金華)如果+3噸表示運(yùn)入倉庫的大米噸數(shù),那么運(yùn)出5噸大米表示為()A.-5噸B.+5噸C.-3噸D.+3噸03.(山西)北京與紐約的時(shí)差-13(負(fù)號(hào)表示同一時(shí)刻紐約時(shí)間比北京晚).如現(xiàn)在是北京時(shí)間15:00,紐約時(shí)問是____【例2】在-eq\f(22,7),π,0,這四個(gè)數(shù)中有理數(shù)的個(gè)數(shù)()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)【解法指導(dǎo)】有理數(shù)的分類:⑴按正負(fù)性分類,有理數(shù);(2)按整數(shù)、分?jǐn)?shù)分類,有理數(shù);其中分?jǐn)?shù)包括有限小數(shù)和無限循環(huán)小數(shù),因?yàn)棣校健菬o限不循環(huán)小數(shù),它不能寫成分?jǐn)?shù)的形式,所以π不是有理數(shù),-eq\f(22,7)是分?jǐn)?shù),是無限循環(huán)小數(shù)可以化成分?jǐn)?shù)形式,0是整數(shù),所以都是有理數(shù),故選C.【變式題組】01.在7,0,15,-eq\f(1,2),-301,,-eq\f(1,8),100,1,-3001中,負(fù)分?jǐn)?shù)為,整數(shù)為,正整數(shù).02.(河北秦皇島)請(qǐng)把下列各數(shù)填入圖中適當(dāng)位置15,-eq\f(1,9),eq\f(2,15),-eq\f(13,8),,-,123,【例3】(寧夏)有一列數(shù)為-1,eq\f(1,2),-eq\f(1,3),eq\f(1,4),-eq\f(1,5),eq\f(1,6),…,找規(guī)律到第2007個(gè)數(shù)是.【解法指導(dǎo)】從一系列的數(shù)中發(fā)現(xiàn)規(guī)律,首先找出不變量和變量,再依變量去發(fā)現(xiàn)規(guī)律.歸納去猜想,然后進(jìn)行驗(yàn)證.解本題會(huì)有這樣的規(guī)律:⑴各數(shù)的分子部是1;⑵各數(shù)的分母依次為1,2,3,4,5,6,…⑶處于奇數(shù)位置的數(shù)是負(fù)數(shù),處于偶數(shù)位置的數(shù)是正數(shù),所以第2007個(gè)數(shù)的分子也是1.分母是2007,并且是一個(gè)負(fù)數(shù),故答案為-eq\f(1,2007).【變式題組】01(湖北宜昌)數(shù)學(xué)解密:第一個(gè)數(shù)是3=2+1,第二個(gè)數(shù)是5=3+2,第三個(gè)數(shù)是9=5+4,第四個(gè)數(shù)是17=9+8…觀察并猜想第六個(gè)數(shù)是.02.(畢節(jié))畢達(dá)哥拉斯學(xué)派發(fā)明了一種“馨折形”填數(shù)法,如圖則填____.03.(茂名)有一組數(shù)1,2,5,10,17,26…請(qǐng)觀察規(guī)律,則第8個(gè)數(shù)為____.【例4】(2008年河北張家口)若1+eq\f(m,2)eq\f(,)的相反數(shù)是-3,則m的相反數(shù)是____.【解法指導(dǎo)】理解相反數(shù)的代數(shù)意義和幾何意義,代數(shù)意義只有符號(hào)不同的兩個(gè)數(shù)叫互為相反數(shù).幾何意義:在數(shù)軸上原點(diǎn)的兩旁且離原點(diǎn)的距離相等的兩個(gè)點(diǎn)所表示的數(shù)叫互為相反數(shù),本題eq\f(m,2)=2,m=4,則m的相反數(shù)-4?!咀兪筋}組】01.(四川宜賓)-5的相反數(shù)是()A.5B.eq\f(1,5)C.-5D.-eq\f(1,5)02.已知a與b互為相反數(shù),c與d互為倒數(shù),則a+b+cd=______03.如圖為一個(gè)正方體紙盒的展開圖,若在其中的三個(gè)正方形A、B、C內(nèi)分別填人適當(dāng)?shù)臄?shù),使得它們折成正方體.若相對(duì)的面上的兩個(gè)數(shù)互為相反數(shù),則填入正方形A、B、C內(nèi)的三個(gè)數(shù)依次為()A.-1,2,0B.0,-2,1C.-2,0,1D.2,1,0【例5】(湖北)a、b為有理數(shù),且a>0,b<0,|b|>a,則a,b、-a,-b的大小順序是()A.b<-a<a<-bB.–a<b<a<-bC.–b<a<-a<bD.–a<a<-b<b【解法指導(dǎo)】理解絕對(duì)值的幾何意義:一個(gè)數(shù)的絕對(duì)值就是數(shù)軸上表示a的點(diǎn)到原點(diǎn)的距離,即|a|,用式子表示為|a|=.本題注意數(shù)形結(jié)合思想,畫一條數(shù)軸標(biāo)出a、b,依相反數(shù)的意義標(biāo)出-b,-a,故選A.【變式題組】推理①若a=b,則|a|=|b|;②若|a|=|b|,則a=b;③若a≠b,則|a|≠|(zhì)b|;④若|a|≠|(zhì)b|,則a≠b,其中正確的個(gè)數(shù)為()A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)02.a(chǎn)、b、c三個(gè)數(shù)在數(shù)軸上的位置如圖,則eq\f(|a|,a)+eq\f(|b|,b)+eq\f(|c|,c)=.03.a(chǎn)、b、c為不等于O的有理數(shù),則eq\f(a,|a|)+eq\f(b,|b|)+eq\f(c,|c|)的值可能是____.【例6】(江西課改)已知|a-4|+|b-8|=0,則eq\f(a+b,ab)的值.【解法指導(dǎo)】本題主要考查絕對(duì)值概念的運(yùn)用,因?yàn)槿魏斡欣頂?shù)a的絕對(duì)值都是非負(fù)數(shù),即|a|≥0.所以|a-4|≥0,|b-8|≥0.而兩個(gè)非負(fù)數(shù)之和為0,則兩數(shù)均為0.解:因?yàn)閨a-4|≥0,|b-8|≥0,又|a-4|+|b-8|=0,∴|a-4|=0,|b-8|=0即a-4=0,b-8=0,a=4,b=8.故eq\f(a+b,ab)=eq\f(12,32)=eq\f(3,8)【變式題組】01.已知|a|=1,|b|=2,|c|=3,且a>b>c,求a+b+C.02.(畢節(jié))若|m-3|+|n+2|=0,則m+2n的值為()A.-4B.-1C.0D.403.已知|a|=8,|b|=2,且|a-b|=b-a,求a和b的值【例7】(第18屆迎春杯)已知(m+n)2+|m|=m,且|2m-n-2|=0.求mn的值.【解法指導(dǎo)】本例的關(guān)鍵是通過分析(m+n)2+|m|的符號(hào),挖掘出m的符號(hào)特征,從而把問題轉(zhuǎn)化為(m+n)2=0,|2m-n-2|=0,找到解題途徑.解:∵(m+n)2≥0,|m|≥O∴(m+n)2+|m|≥0,而(m+n)2+|m|=m∴m≥0,∴(m+n)2+m=m,即(m+n)2=0∴m+n=O①又∵|2m-n-2|=0∴2m-n-2=0②由①②得m=eq\f(2,3),n=-eq\f(2,3),∴mn=-eq\f(4,9)【變式題組】01.已知(a+b)2+|b+5|=b+5且|2a-b–1|=0,求a-b.02.(第16屆迎春杯)已知y=|x-a|+|x+19|+|x-a-96|,如果19<a<96.a(chǎn)≤x≤96,求y的最大值.演練鞏固·反饋提高01.觀察下列有規(guī)律的數(shù)eq\f(1,2),eq\f(1,6),eq\f(1,12),eq\f(1,20),eq\f(1,30),eq\f(1,42)…根據(jù)其規(guī)律可知第9個(gè)數(shù)是()A.eq\f(1,56)B.eq\f(1,72)C.eq\f(1,90)D.eq\f(1,110)02.(蕪湖)-6的絕對(duì)值是()A.6B.-6C.eq\f(1,6)D.-eq\f(1,6)03.在-eq\f(22,7),π,8.四個(gè)數(shù)中,有理數(shù)的個(gè)數(shù)為()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)04.若一個(gè)數(shù)的相反數(shù)為a+b,則這個(gè)數(shù)是()A.a(chǎn)-bB.b-aC.–a+bD.–a-b05.?dāng)?shù)軸上表示互為相反數(shù)的兩點(diǎn)之間距離是6,這兩個(gè)數(shù)是()A.0和6B.0和-6C.3和-3D.0和306.若-a不是負(fù)數(shù),則a()A.是正數(shù)B.不是負(fù)數(shù)C.是負(fù)數(shù)D.不是正數(shù)07.下列結(jié)論中,正確的是()①若a=b,則|a|=|b|②若a=-b,則|a|=|b|③若|a|=|b|,則a=-b④若|a|=|b|,則a=bA.①②B.③④C.①④D.②③08.有理數(shù)a、b在數(shù)軸上的對(duì)應(yīng)點(diǎn)的位置如圖所示,則a、b,-a,|b|的大小關(guān)系正確的是()A.|b|>a>-a>bB.|b|>b>a>-aC.a(chǎn)>|b|>b>-aD.a(chǎn)>|b|>-a>b09.一個(gè)數(shù)在數(shù)軸上所對(duì)應(yīng)的點(diǎn)向右移動(dòng)5個(gè)單位后,得到它的相反數(shù)的對(duì)應(yīng)點(diǎn),則這個(gè)數(shù)是____.10.已知|x+2|+|y+2|=0,則xy=____.11.a(chǎn)、b、c三個(gè)數(shù)在數(shù)軸上的位置如圖,求eq\f(|a|,a)+eq\f(|b|,b)+eq\f(|abc|,abc)+eq\f(|c|,c)=12.若三個(gè)不相等的有理數(shù)可以表示為1、a、a+b也可以表示成0、b、eq\f(b,a)的形式,試求a、b的值.13.已知|a|=4,|b|=5,|c|=6,且a>b>c,求a+b-c.14.|a|具有非負(fù)性,也有最小值為0,試討論:當(dāng)x為有理數(shù)時(shí),|x-1|+|x-3|有沒有最小值,如果有,求出最小值;如果沒有,說明理由.15.點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b,A、B兩點(diǎn)之間的距離表示為|AB|.當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,|AB|=|OB|=|b|=|a-b|當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí)有以下三種情況:①如圖2,點(diǎn)A、B都在原點(diǎn)的右邊|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如圖3,點(diǎn)A、B都在原點(diǎn)的左邊,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如圖4,點(diǎn)A、B在原點(diǎn)的兩邊,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;綜上,數(shù)軸上A、B兩點(diǎn)之間的距離|AB|=|a-b|.回答下列問題:⑴數(shù)軸上表示2和5的兩點(diǎn)之間的距離是,數(shù)軸上表示-2和-5的兩點(diǎn)之間的距離是,,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是;⑵數(shù)軸上表示x和-1的兩點(diǎn)分別是點(diǎn)A和B,則A、B之間的距離是,如果|AB|=2,那么x=;⑶當(dāng)代數(shù)式|x+1|+|x-2|取最小值時(shí),相應(yīng)的x的取值范圍是.培優(yōu)升級(jí)·奧賽檢測(cè)01.(重慶市競(jìng)賽題)在數(shù)軸上任取一條長度為1999eq\f(1,9)的線段,則此線段在這條數(shù)軸上最多能蓋住的整數(shù)點(diǎn)的個(gè)數(shù)是()A.1998B.1999C.2000D.200102.(第18屆希望杯邀請(qǐng)賽試題)在數(shù)軸上和有理數(shù)a、b、c對(duì)應(yīng)的點(diǎn)的位置如圖所示,有下列四個(gè)結(jié)論:①abc<0;②|a-b|+|b-c|=|a-c|;③(a-b)(b-c)(c-a)>0;④|a|<1-bc.其中正確的結(jié)論有()A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)03.如果a、b、c是非零有理數(shù),且a+b+c=0.那么eq\f(a,|a|)+eq\f(b,|b|)+eq\f(c,|c|)-eq\f(abc,|abc|)的所有可能的值為()A.-1B.1或-1C.2或-2D.0或-204.已知|m|=-m,化簡|m-1|-|m-2|所得結(jié)果()A.-1B.1C.2m-3D.3-2m05.如果0<p<15,那么代數(shù)式|x-p|+|x-15|+|x-p-15|在p≤x≤15的最小值()A.30B.0C.15D.一個(gè)與p有關(guān)的代數(shù)式06.|x+1|+|x-2|+|x-3|的最小值為.07.若a>0,b<0,使|x-a|+|x-b|=a-b成立的x取值范圍.08.(武漢市選拔賽試題)非零整數(shù)m、n滿足|m|+|n|-5=0所有這樣的整數(shù)組(m,n)共有組09.若非零有理數(shù)m、n、p滿足eq\f(|m|,m)+eq\f(|n|,n)+eq\f(|p|,p)=1.則eq\f(2mnp,|3mnp|)=.10.(19屆希望杯試題)試求|x-1|+|x-2|+|x-3|+…+|x-1997|的最小值.11.已知(|x+1|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+1|)=36,求x+2y+3z的最大值和最小值.12.電子跳蚤落在數(shù)軸上的某點(diǎn)k0,第一步從k0向左跳1個(gè)單位得k1,第二步由k1向右跳2個(gè)單位到k2,第三步由k2向左跳3個(gè)單位到k3,第四步由k3向右跳4個(gè)單位到k4…按以上規(guī)律跳100步時(shí),電子跳蚤落在數(shù)軸上的點(diǎn)k100新表示的數(shù)恰好,試求k0所表示的數(shù).13.某城鎮(zhèn),沿環(huán)形路上依次排列有五所小學(xué),它們順次有電腦15臺(tái)、7臺(tái)、11臺(tái)、3臺(tái),14臺(tái),為使各學(xué)校里電腦數(shù)相同,允許一些小學(xué)向相鄰小學(xué)調(diào)出電腦,問怎樣調(diào)配才能使調(diào)出的電腦總臺(tái)數(shù)最小并求出調(diào)出電腦的最少總臺(tái)數(shù).第02講有理數(shù)的加減法考點(diǎn)·方法·破譯1.理解有理數(shù)加法法則,了解有理數(shù)加法的實(shí)際意義.2.準(zhǔn)確運(yùn)用有理數(shù)加法法則進(jìn)行運(yùn)算,能將實(shí)際問題轉(zhuǎn)化為有理數(shù)的加法運(yùn)算.3.理解有理數(shù)減法與加法的轉(zhuǎn)換關(guān)系,會(huì)用有理數(shù)減法解決生活中的實(shí)際問題.4.會(huì)把加減混合運(yùn)算統(tǒng)一成加法運(yùn)算,并能準(zhǔn)確求和.經(jīng)典·考題·賞析【例1】(河北唐山)某天股票A開盤價(jià)18元,上午11:30跌了元,下午收盤時(shí)又漲了元,則股票A這天的收盤價(jià)為()A.元 B.元 C.元 D.18元【解法指導(dǎo)】將實(shí)際問題轉(zhuǎn)化為有理數(shù)的加法運(yùn)算時(shí),首先將具有相反意義的量確定一個(gè)為正,另一個(gè)為負(fù),其次在計(jì)算時(shí)正確選擇加法法則,是同號(hào)相加,取相同符號(hào)并用絕對(duì)值相加,是異號(hào)相加,取絕對(duì)值較大符號(hào),并用較大絕對(duì)值減去較小絕對(duì)值.解:18+(-)+()=,故選C.【變式題組】01.今年陜西省元月份某一天的天氣預(yù)報(bào)中,延安市最低氣溫為-6℃,西安市最低氣溫2℃,這一天延安市的最低氣溫比西安低()A.8℃ B.-8℃ C.6℃ D.2℃02.(河南)飛機(jī)的高度為2400米,上升250米,又下降了327米,這是飛機(jī)的高度為__________03.(浙江)珠穆朗瑪峰海拔8848m,吐魯番海拔高度為-155m,則它們的平均海拔高度為__________【例2】計(jì)算(-83)+(+26)+(-17)+(-26)+(+15)【解法指導(dǎo)】應(yīng)用加法運(yùn)算簡化運(yùn)算,-83與-17相加可得整百的數(shù),+26與-26互為相反數(shù),相加為0,有理數(shù)加法常見技巧有:⑴互為相反數(shù)結(jié)合一起;⑵相加得整數(shù)結(jié)合一起;⑶同分母的分?jǐn)?shù)或容易通分的分?jǐn)?shù)結(jié)合一起;⑷相同符號(hào)的數(shù)結(jié)合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【變式題組】01.(-)+(-3)+(-1)+(-1)02.(-)++(-)+(-)03.+3+(-3)+11+(-)【例3】計(jì)算【解法指導(dǎo)】依進(jìn)行裂項(xiàng),然后鄰項(xiàng)相消進(jìn)行化簡求和.解:原式====【變式題組】01.計(jì)算1+(-2)+3+(-4)+…+99+(-100)02.如圖,把一個(gè)面積為1的正方形等分成兩個(gè)面積為的長方形,接著把面積為的長方形等分成兩個(gè)面積為的正方形,再把面積為的正方形等分成兩個(gè)面積為的長方形,如此進(jìn)行下去,試?yán)脠D形揭示的規(guī)律計(jì)算=__________.【例4】如果a<0,b>0,a+b<0,那么下列關(guān)系中正確的是()A.a(chǎn)>b>-b>-a B.a(chǎn)>-a>b>-bC.b>a>-b>-a D.-a>b>-b>a【解法指導(dǎo)】緊扣有理數(shù)加法法則,由兩加數(shù)及其和的符號(hào),確定兩加數(shù)的絕對(duì)值的大小,然后根據(jù)相反數(shù)的關(guān)系將它們?cè)谕粩?shù)軸上表示出來,即可得出結(jié)論.解:∵a<0,b>0,∴a+b是異號(hào)兩數(shù)之和又a+b<0,∴a、b中負(fù)數(shù)的絕對(duì)值較大,∴|a|>|b|將a、b、-a、-b表示在同一數(shù)軸上,如圖,則它們的大小關(guān)系是-a>b>-b>a【變式題組】01.若m>0,n<0,且|m|>|n|,則m+n________0.(填>、<號(hào))02.若m<0,n>0,且|m|>|n|,則m+n________0.(填>、<號(hào))03.已知a<0,b>0,c<0,且|c|>|b|>|a|,試比較a、b、c、a+b、a+c的大小【例5】4-(-33)-(-)-(-21)【解法指導(dǎo)】有理數(shù)減法的運(yùn)算步驟:⑴依有理數(shù)的減法法則,把減號(hào)變?yōu)榧犹?hào),并把減數(shù)變?yōu)樗南喾磾?shù);⑵利用有理數(shù)的加法法則進(jìn)行運(yùn)算.解:4-(-33)-(-)-(-21)=4+33++21=++(33+21)=6+55=61【變式題組】01.02.4-(+)-(-3)+(-)03.178--(-43)+153-【例6】試看下面一列數(shù):25、23、21、19…⑴觀察這列數(shù),猜想第10個(gè)數(shù)是多少第n個(gè)數(shù)是多少⑵這列數(shù)中有多少個(gè)數(shù)是正數(shù)從第幾個(gè)數(shù)開始是負(fù)數(shù)⑶求這列數(shù)中所有正數(shù)的和.【解法指導(dǎo)】尋找一系列數(shù)的規(guī)律,應(yīng)該從特殊到一般,找到前面幾個(gè)數(shù)的規(guī)律,通過觀察推理、猜想出第n個(gè)數(shù)的規(guī)律,再用其它的數(shù)來驗(yàn)證.解:⑴第10個(gè)數(shù)為7,第n個(gè)數(shù)為25-2(n-1)⑵∵n=13時(shí),25-2(13-1)=1,n=14時(shí),25-2(14-1)=-1故這列數(shù)有13個(gè)數(shù)為正數(shù),從第14個(gè)數(shù)開始就是負(fù)數(shù).⑶這列數(shù)中的正數(shù)為25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【變式題組】01.(杭州)觀察下列等式1-=,2-=,3-=,4-=…依你發(fā)現(xiàn)的規(guī)律,解答下列問題.⑴寫出第5個(gè)等式;⑵第10個(gè)等式右邊的分?jǐn)?shù)的分子與分母的和是多少02.觀察下列等式的規(guī)律9-1=8,16-4=12,25-9=16,36-16=20⑴用關(guān)于n(n≥1的自然數(shù))的等式表示這個(gè)規(guī)律;⑵當(dāng)這個(gè)等式的右邊等于2008時(shí)求n.【例7】(第十屆希望杯競(jìng)賽試題)求+(+)+(++)+(+++)+…+(++…++)【解法指導(dǎo)】觀察式中數(shù)的特點(diǎn)發(fā)現(xiàn):若括號(hào)內(nèi)在加上相同的數(shù)均可合并成1,由此我們采取將原式倒序后與原式相加,這樣極大簡化計(jì)算了.解:設(shè)S=+(+)+(++)+…+(++…++)則有S=+(+)+(++)+…+(++…++)將原式的和倒序再相加得2S=++(+++)+(+++++)+…+(++…+++++…++)即2S=1+2+3+4+…+49==1225∴S=【變式題組】01.計(jì)算2-22-23-24-25-26-27-28-29+21002.(第8屆希望杯試題)計(jì)算(1---…-)(+++…++)-(1---…-)(+++…+)演練鞏固·反饋提高01.m是有理數(shù),則m+|m|()A.可能是負(fù)數(shù) B.不可能是負(fù)數(shù) C.必是正數(shù) D.可能是正數(shù),也可能是負(fù)數(shù)02.如果|a|=3,|b|=2,那么|a+b|為()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2這三個(gè)數(shù)中,任意兩數(shù)之和的最大值是()A. 1 B.0 C.-1 D.-304.兩個(gè)有理數(shù)的和是正數(shù),下面說法中正確的是()A.兩數(shù)一定都是正數(shù) B.兩數(shù)都不為0 C.至少有一個(gè)為負(fù)數(shù) D.至少有一個(gè)為正數(shù)05.下列等式一定成立的是()A.|x|-x=0 B.-x-x=0 C.|x|+|-x|=0 D.|x|-|x|=006.一天早晨的氣溫是-6℃,中午又上升了10℃,午間又下降了8℃,則午夜氣溫是()A.-4℃ B.4℃ C.-3℃ D.-5℃07.若a<0,則|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.設(shè)x是不等于0的有理數(shù),則值為()A.0或1 B.0或2 C.0或-1 D.0或-209.(濟(jì)南)2+(-2)的值為__________10.用含絕對(duì)值的式子表示下列各式:⑴若a<0,b>0,則b-a=__________,a-b=__________⑵若a>b>0,則|a-b|=__________⑶若a<b<0,則a-b=__________11.計(jì)算下列各題:⑴23+(-27)+9+5 ⑵-+-+-⑶--3+-7 ⑷--(-)-|-|12.計(jì)算1-3+5-7+9-11+…+97-9913.某檢修小組乘汽車沿公路檢修線路,規(guī)定前進(jìn)為正,后退為負(fù),某天從A地出發(fā)到收工時(shí)所走的路線(單位:千米)為:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴問收工時(shí)距離A地多遠(yuǎn)⑵若每千米耗油千克,問從A地出發(fā)到收工時(shí)共耗油多少千克14.將1997減去它的,再減去余下的,再減去余下的,再減去余下的……以此類推,直到最后減去余下的,最后的得數(shù)是多少15.獨(dú)特的埃及分?jǐn)?shù):埃及同中國一樣,也是世界著名的文明古國,古代埃及人處理分?jǐn)?shù)與眾不同,他們一般只使用分子為1的分?jǐn)?shù),例如+來表示,用++表示等等.現(xiàn)有90個(gè)埃及分?jǐn)?shù):,,,,…,,你能從中挑出10個(gè),加上正、負(fù)號(hào),使它們的和等于-1嗎培優(yōu)升級(jí)·奧賽檢測(cè)01.(第16屆希望杯邀請(qǐng)賽試題)等于()A. B. C. D.02.自然數(shù)a、b、c、d滿足+++=1,則+++等于()A. B. C. D.03.(第17屆希望杯邀請(qǐng)賽試題)a、b、c、d是互不相等的正整數(shù),且abcd=441,則a+b+c+d值是()A.30 B.32 C.34 D.3604.(第7屆希望杯試題)若a=,b=,c=,則a、b、c大小關(guān)系是()A.a(chǎn)<b<c B.b<c<a C.c<b<a D.a(chǎn)<c<b05.的值得整數(shù)部分為()A.1 B.2 C.3 D.406.(-2)2004+3×(-2)2003的值為()A.-22003 B.22003 C.-22004 D.22004 07.(希望杯邀請(qǐng)賽試題)若|m|=m+1,則(4m+1)2004=__________08.+(+)+(++)+…+(++…+)=__________09.=__________10.1+2-22-23-24-25-26-27-28-29+210=__________11.求32001×72002×132003所得數(shù)的末位數(shù)字為__________12.已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,求ab13.計(jì)算(-1)(-1)(-1)…(-1)(-1)14.請(qǐng)你從下表歸納出13+23+33+43+…+n3的公式并計(jì)算出13+23+33+43+…+1003的值.第03講有理數(shù)的乘除、乘方考點(diǎn)·方法·破譯1.理解有理數(shù)的乘法法則以及運(yùn)算律,能運(yùn)用乘法法則準(zhǔn)確地進(jìn)行有理數(shù)的乘法運(yùn)算,會(huì)利用運(yùn)算律簡化乘法運(yùn)算.2.掌握倒數(shù)的概念,會(huì)運(yùn)用倒數(shù)的性質(zhì)簡化運(yùn)算.3.了解有理數(shù)除法的意義,掌握有理數(shù)的除法法則,熟練進(jìn)行有理數(shù)的除法運(yùn)算.4.掌握有理數(shù)乘除法混合運(yùn)算的順序,以及四則混合運(yùn)算的步驟,熟練進(jìn)行有理數(shù)的混合運(yùn)算.5.理解有理數(shù)乘方的意義,掌握有理數(shù)乘方運(yùn)算的符號(hào)法則,進(jìn)一步掌握有理數(shù)的混合運(yùn)算.經(jīng)典·考題·賞析【例1】計(jì)算⑴⑵⑶⑷⑸【解法指導(dǎo)】掌握有理數(shù)乘法法則,正確運(yùn)用法則,一是要體會(huì)并掌握乘法的符號(hào)規(guī)律,二是細(xì)心、穩(wěn)妥、層次清楚,即先確定積的符號(hào),后計(jì)算絕對(duì)值的積.解:⑴⑵⑶⑷⑸【變式題組】01.⑴⑵⑶⑷⑸2.3.4.【例2】已知兩個(gè)有理數(shù)a、b,如果ab<0,且a+b<0,那么()A.a(chǎn)>0,b<0B.a(chǎn)<0,b>0C.a(chǎn)、b異號(hào)D.a(chǎn)、b異號(hào)且負(fù)數(shù)的絕對(duì)值較大【解法指導(dǎo)】依有理數(shù)乘法法則,異號(hào)為負(fù),故a、b異號(hào),又依加法法則,異號(hào)相加取絕對(duì)值較大數(shù)的符號(hào),可得出判斷.解:由ab<0知a、b異號(hào),又由a+b<0,可知異號(hào)兩數(shù)之和為負(fù),依加法法則得負(fù)數(shù)的絕對(duì)值較大,選D.【變式題組】01.若a+b+c=0,且b<c<0,則下列各式中,錯(cuò)誤的是()A.a(chǎn)+b>0B.b+c<0C.a(chǎn)b+ac>0D.a(chǎn)+bc>002.已知a+b>0,a-b<0,ab<0,則a___________0,b___________0,|a|_________|b|.03.(山東煙臺(tái))如果a+b<0,,則下列結(jié)論成立的是()A.a(chǎn)>0,b>0B.a(chǎn)<0,b<0C.a(chǎn)>0,b<0D.a(chǎn)<0,b>004.(廣州)下列命題正確的是()A.若ab>0,則a>0,b>0B.若ab<0,則a<0,b<0C.若ab=0,則a=0或b=0D.若ab=0,則a=0且b=0【例3】計(jì)算⑴⑵⑶⑷【解法指導(dǎo)】進(jìn)行有理數(shù)除法運(yùn)算時(shí),若不能整除,應(yīng)用法則1,先把除法轉(zhuǎn)化成乘法,再確定符號(hào),然后把絕對(duì)值相乘,要注意除法與乘法互為逆運(yùn)算.若能整除,應(yīng)用法則2,可直接確定符號(hào),再把絕對(duì)值相除.解:⑴⑵⑶⑷【變式題組】01.⑴⑵⑶⑷02.⑴⑵⑶03.【例4】(茂名)若實(shí)數(shù)a、b滿足,則=___________.【解法指導(dǎo)】依絕對(duì)值意義進(jìn)行分類討論,得出a、b的取值范圍,進(jìn)一步代入結(jié)論得出結(jié)果.解:當(dāng)ab>0,;當(dāng)ab<0,,∴ab<0,從而=-1.【變式題組】01.若k是有理數(shù),則(|k|+k)÷k的結(jié)果是()A.正數(shù)B.0C.負(fù)數(shù)D.非負(fù)數(shù)02.若A.b都是非零有理數(shù),那么的值是多少03.如果,試比較與的大小.【例5】已知⑴求的值;⑵求的值.【解法指導(dǎo)】表示n個(gè)a相乘,根據(jù)乘方的符號(hào)法則,如果a為正數(shù),正數(shù)的任何次冪都是正數(shù),如果a是負(fù)數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù).解:∵⑴當(dāng)時(shí),當(dāng)時(shí),⑵當(dāng)時(shí),,時(shí),【變式題組】01.(北京)若,則的值是___________.02.已知x、y互為倒數(shù),且絕對(duì)值相等,求的值,這里n是正整數(shù).【例6】(安徽)2007年我省為135萬名農(nóng)村中小學(xué)生免費(fèi)提供教科書,減輕了農(nóng)民的負(fù)擔(dān),135萬用科學(xué)記數(shù)法表示為()A.×106B.×106C.×107D.×107【解法指導(dǎo)】將一個(gè)數(shù)表示為科學(xué)記數(shù)法的a×10n的形式,其中a的整數(shù)位數(shù)是1位.故答案選B.【變式題組】01.(武漢)武漢市今年約有103000名學(xué)生參加中考,103000用科學(xué)記數(shù)法表示為()A.×105B.×105C.×104D.103×10302.(沈陽)沈陽市計(jì)劃從2008年到2012年新增林地面積253萬畝,253萬畝用科學(xué)記數(shù)法表示正確的是()A.×105畝B.×106畝C.253×104畝D.×107畝【例7】(上海競(jìng)賽)【解法指導(dǎo)】找出的通項(xiàng)公式=原式====99【變式題組】1A.B.C.D.2.(第10屆希望杯試題)已知求的值.演練鞏固·反饋提高01.三個(gè)有理數(shù)相乘,積為負(fù)數(shù),則負(fù)因數(shù)的個(gè)數(shù)為()A.1個(gè)B.2個(gè)C.3個(gè)D.1個(gè)或3個(gè)02.兩個(gè)有理數(shù)的和是負(fù)數(shù),積也是負(fù)數(shù),那么這兩個(gè)數(shù)()A.互為相反數(shù)B.其中絕對(duì)值大的數(shù)是正數(shù),另一個(gè)是負(fù)數(shù)C.都是負(fù)數(shù)D.其中絕對(duì)值大的數(shù)是負(fù)數(shù),另一個(gè)是正數(shù)03.已知abc>0,a>0,ac<0,則下列結(jié)論正確的是()A.b<0,c>0B.b>0,c<0C.b<0,c<0D.b>0,c>004.若|ab|=ab,則()A.a(chǎn)b>0B.a(chǎn)b≥0C.a(chǎn)<0,b<0D.a(chǎn)b<005.若a、b互為相反數(shù),c、d互為倒數(shù),m的絕對(duì)值為2,則代數(shù)式的值為()A.-3B.1C.±3D.-3或106.若a>,則a的取值范圍()A.a(chǎn)>1B.0<a<1C.a(chǎn)>-1D.-1<a<0或a>107.已知a、b為有理數(shù),給出下列條件:①a+b=0;②a-b=0;③ab<0;④,其中能判斷a、b互為相反數(shù)的個(gè)數(shù)是()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)08.若ab≠0,則的取值不可能為()A.0B.1C.2D.-209.的值為()A.-2B.(-2)21C.0D.-21010.(安徽)2010年一季度,全國城鎮(zhèn)新增就業(yè)人數(shù)289萬人,用科學(xué)記數(shù)法表示289萬正確的是()A.×107B.×106C.×105D.×10411.已知4個(gè)不相等的整數(shù)a、b、c、d,它們的積abcd=9,則a+b+c+d=___________.12.(n為自然數(shù))=___________.13.如果,試比較與xy的大小.14.若a、b、c為有理數(shù)且,求的值.15.若a、b、c均為整數(shù),且.求的值.培優(yōu)升級(jí)·奧賽檢測(cè)01.已知有理數(shù)x、y、z兩兩不相等,則中負(fù)數(shù)的個(gè)數(shù)是()A.1個(gè)B.2個(gè)C.3個(gè)D.0個(gè)或2個(gè)02.計(jì)算歸納各計(jì)算結(jié)果中的個(gè)位數(shù)字規(guī)律,猜測(cè)的個(gè)位數(shù)字是()A.1B.3C.7D.503.已知,下列判斷正確的是()A.a(chǎn)bcde<0B.a(chǎn)b2cd4e<0C.a(chǎn)b2cde<0D.a(chǎn)bcd4e<004.若有理數(shù)x、y使得這四個(gè)數(shù)中的三個(gè)數(shù)相等,則|y|-|x|的值是()A.B.0C.D.05.若A=,則A-1996的末位數(shù)字是()A.0B.1C.7D.906.如果,則的值是()A.2B.1C.0D.-107.已知,則a、b、c、d大小關(guān)系是()A.a(chǎn)>b>c>dB.a(chǎn)>b>d>cC.b>a>c>dD.a(chǎn)>d>b>c08.已知a、b、c都不等于0,且的最大值為m,最小值為n,則=___________.09.(第13屆“華杯賽”試題)從下面每組數(shù)中各取一個(gè)數(shù)將它們相乘,那么所有這樣的乘積的總和是___________.第一組:第二組:第三組:10.一本書的頁碼從1記到n,把所有這些頁碼加起來,其中有一頁碼被錯(cuò)加了兩次,結(jié)果得出了不正確的和2002,這個(gè)被加錯(cuò)了兩次的頁碼是多少11.(湖北省競(jìng)賽試題)觀察下列規(guī)律排成一列數(shù):,,,,,,,,,,,,,,,,…(*),在(*)中左起第m個(gè)數(shù)記為F(m),當(dāng)F(m)=時(shí),求m的值和這m個(gè)數(shù)的積.12.圖中顯示的填數(shù)“魔方”只填了一部分,將下列9個(gè)數(shù):填入方格中,使得所有行列及對(duì)角線上各數(shù)相乘的積相等,求x的值.32x6413.(第12屆“華杯賽”試題)已知m、n都是正整數(shù),并且證明:⑴⑵,求m、n的值.第04講整式考點(diǎn)·方法·破譯1.掌握單項(xiàng)式及單項(xiàng)式的系數(shù)、次數(shù)的概念.2.掌握多項(xiàng)式及多項(xiàng)式的項(xiàng)、常數(shù)項(xiàng)及次數(shù)等概念.3.掌握整式的概念,會(huì)判斷一個(gè)代數(shù)式是否為整式.4.了解整式讀、寫的約定俗成的一般方法,會(huì)根據(jù)給出的字母的值求多項(xiàng)式的值.經(jīng)典·考題·賞析【例1】判斷下列各代數(shù)式是否是單項(xiàng)式,如果不是請(qǐng)簡要說明理由,如果是請(qǐng)指出它的系數(shù)與次數(shù).1【解法指導(dǎo)】理解單項(xiàng)式的概念:由數(shù)與字母的乘積組成的代數(shù)式,單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式,數(shù)字的次數(shù)為0,π是常數(shù),單項(xiàng)式中所有字母指數(shù)和叫單項(xiàng)式次數(shù).解:⑴不是,因?yàn)榇鷶?shù)式中出現(xiàn)了加法運(yùn)算;⑵不是,因?yàn)榇鷶?shù)式是與x的商;⑶是,它的系數(shù)為π,次數(shù)為2;⑷是,它的系數(shù)為QUOTE-32,次數(shù)為3.【變式題組】01.判斷下列代數(shù)式是否是單項(xiàng)式1a02.說出下列單項(xiàng)式的系數(shù)與次數(shù)1【例2】如果2xny4與12m2x2【解法指導(dǎo)】單項(xiàng)式的次數(shù)要弄清針對(duì)什么字母而言,是針對(duì)x或y或x、y等是有區(qū)別的,該題是針對(duì)x與y而言的,因此單項(xiàng)式的次數(shù)指x、y的指數(shù)之和,與字母m無關(guān),此時(shí)將m看成一個(gè)要求的已知數(shù).解:由題意得n+4=6,2+∴m【變式題組】01.一個(gè)含有x、y的五次單項(xiàng)式,x的指數(shù)為3.且當(dāng)x=2,y=-1時(shí),這個(gè)單項(xiàng)式的值為32,求這個(gè)單項(xiàng)式.02.(畢節(jié))寫出含有字母x、y的五次單項(xiàng)式______________________.【例3】已知多項(xiàng)式-45x2y【解法指導(dǎo)】n個(gè)單項(xiàng)式的和叫多項(xiàng)式,每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng),多項(xiàng)式里次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù).解:⑴這個(gè)多項(xiàng)式是七次四項(xiàng)式;(2)最高次項(xiàng)是23x4y【變式題組】01.指出下列多項(xiàng)式的項(xiàng)和次數(shù)⑴a3-02.指出下列多項(xiàng)式的二次項(xiàng)、二次項(xiàng)系數(shù)和常數(shù)項(xiàng)⑴x3+【例4】多項(xiàng)式7xm+kx2-【解法指導(dǎo)】多項(xiàng)式的次數(shù)是單項(xiàng)式中次數(shù)最高的次數(shù),單項(xiàng)式的系數(shù)是數(shù)字與字母乘積中的數(shù)字因數(shù).解:因?yàn)?xm+kx2-3n+1x+5是關(guān)于x的三次三項(xiàng)式,依三次知m=3,而一次項(xiàng)系數(shù)為-7,即-(3n+1【變式題組】01.多項(xiàng)式3xmyA.2B.-2C.±2D.±102.已知關(guān)于x、y的多項(xiàng)式ax2+2bxy+x2-03.已知多項(xiàng)式-56x2y【例5】已知代數(shù)式3x2-2x+6的值是【解法指導(dǎo)】由3x2-解:由3x232x【變式題組】01.(貴州)如果代數(shù)式-2a+3b+8的值為18,那么代數(shù)式9b-6a+2的值等于()A.28B.-28C.32D.-3202.(同山)若a2+a=0,則03.(濰坊)代數(shù)式3x2-4x+6的值為【例6】證明代數(shù)式16+m-8m-m-9-(3-6m)的值與【解法指導(dǎo)】證代數(shù)式的值與m的取值無關(guān),只需證明代數(shù)式的化簡結(jié)果不出現(xiàn)字母即可.證明:原式=16+m∴無論m的值為何,原式值都為4.∴原式的值與m的取值無關(guān).【變式題組】01.已知A=2x2+3ax-2x-1,B=-x2+ax-1,且02.若代數(shù)式x2+ax-2y+7-(bx2-【例7】(北京市選拔賽)同時(shí)都含有a、b、c,且系數(shù)為1的七次單項(xiàng)式共有()A.4B.12C.15D.25【解法指導(dǎo)】首先寫出符合題意的單項(xiàng)式axbycz,x、y、z都是正整數(shù),再依x+y+z=7來確定x解:axbycz為所求的單項(xiàng)式,則x、y、z都是正整數(shù),且x+y+z=7.當(dāng)x=1時(shí),y=1,2,3,4,5,z=5,4,3,2,1.當(dāng)x=2時(shí),y=1,2,3,4,z=4,3,2,1.當(dāng)x=3時(shí),y=1,2,3,z=3,2,1.當(dāng)x=4時(shí),y=1,2,z=2,1.當(dāng)x=5時(shí),【變式題組】01.已知m、n是自然數(shù),am-3b2c-102.整數(shù)n=___________時(shí),多項(xiàng)式5x演練鞏固·反饋提高01.下列說法正確的是()A.x-y2是單項(xiàng)式B.3x2y3z的次數(shù)為5C.單項(xiàng)式a02.a(chǎn)表示一個(gè)兩位數(shù),b表示一個(gè)一位數(shù),如果把b放在a的右邊組成一個(gè)三位數(shù).則這個(gè)三位數(shù)是()A.100b+aB.10a+bC.a(chǎn)+bD.100a+b03.若多項(xiàng)式2y2+3x的值為1A.2B.17C.-7D.704.隨著計(jì)算機(jī)技術(shù)的迅猛發(fā)展,電腦價(jià)格不斷降低,某品牌電腦原售價(jià)為n元,降低m元后,又降低20%,那么該電腦的現(xiàn)售價(jià)為()A.15n+15m元B.405.若多項(xiàng)式kk-1x2-kx+x-3A.0B.1C.0或1D.不能確定06.若(1-n2)x07.電影院里第1排有a個(gè)座位,后面每排都比前排多3個(gè)座位,則第10排有_____個(gè)座位.08.若3amb3+409.一項(xiàng)工作,甲單獨(dú)做需a天完成,乙單獨(dú)做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串單項(xiàng)式x,-2x2,3x11.(安徽)一個(gè)含有x、y的五次單項(xiàng)式,x的指數(shù)為3,且當(dāng)x=2,y=-1時(shí),這個(gè)單項(xiàng)式值為32,求這個(gè)單項(xiàng)式.12.(天津)已知x=3時(shí)多項(xiàng)式ax3+bx+5的值為-1,則當(dāng)13.若關(guān)于x、y的多項(xiàng)式2x2y-2314.某地電話撥號(hào)入網(wǎng)有兩種方式,用戶可任取其一.A:計(jì)時(shí)制:元/分B:包月制:50元/月(只限一部宅電上網(wǎng)).此外,每種上網(wǎng)方式都得加收通行費(fèi)元/分.⑴某用戶某月上網(wǎng)時(shí)間為x小時(shí),請(qǐng)你寫出兩種收費(fèi)方式下該用戶應(yīng)該支付的費(fèi)用;(2)若某用戶估計(jì)一個(gè)月內(nèi)上網(wǎng)時(shí)間為20小時(shí),你認(rèn)為采用哪種方式更合算.培優(yōu)升級(jí)·奧賽檢測(cè)01.(揚(yáng)州)有一列數(shù)a1、a2、a3A.2007B.2C.12D.02.(華師一附高招生)設(shè)記號(hào)*表示求a、b算術(shù)平均數(shù)的運(yùn)算,即a*b=a+b2,則下列等式中對(duì)于任意實(shí)數(shù)a、b、①a+b*c③a*b+cA.①②③B.①②④C.①③④D.②④03.已知-1<b<0,0<a<1,那么在代數(shù)式a-b,a+b,a+b2,a2A.a(chǎn)-bB.a(chǎn)+bC.a(chǎn)+04.在一個(gè)地球儀的赤道上用鐵絲箍半徑增大1米,需增加m米長的鐵絲,假設(shè)地球的赤道上一個(gè)鐵絲箍,同樣半徑增大1米,需增加n米長的鐵絲,則m與n大小關(guān)系()A.m>nB.m<nC.m=nD.不能確定05.(廣安)已知4m=a,06.某書店出售圖書的同時(shí),推出一項(xiàng)租書業(yè)務(wù),每租看一本書,租期不超過3天,每天租金a元,租期超過3天,從第4天開始每天另加收b元,如果租看1本書7天歸還,那么租金為____________元.07.已知a-b=2004,b-c=2005,c-d=2007.則08.有理數(shù)a、b、c在數(shù)軸上的位置如圖所示,a+b+09.已知-m+2n=5,則10.(全國初中數(shù)學(xué)競(jìng)賽)設(shè)a、b、c的平均數(shù)為M,a、b的平均數(shù)為N,又N、c的平均數(shù)為P,若a>b>c,則M與P大小關(guān)系______________.11.(資陽)如圖,對(duì)面積為1的△ABC逐次進(jìn)行以下操作:第一次操作,分別延長AB,BC,CA至點(diǎn)A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1,B1,C1,得到△A1B1C1,記其面積為S1;第二次操作,分別延長A1B1,B1C1,C1A1至點(diǎn)A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,順次連接A2,B2,C2,得到△A2B2C2,記其面積為S2;…;按此規(guī)律繼續(xù)下去,可得到△A5B5C5,則其面積S5=________________.12.(安徽)探索n×n的正方形釘子板上(n是板每邊上的釘子數(shù)),連接任意兩個(gè)釘子所得到的不同長度值的線段種數(shù):當(dāng)n=2時(shí),釘子板上所連不同線段的長度值只有1與,所以不同長度值的線段只有2種,若用S表示不同長度值的線段種數(shù),則S=2;當(dāng)n=3時(shí),釘子板上所連不同線段的長度值只有1,,2,,2五種,比n=2時(shí)增加了3種,即S=2+3=5.1.觀察圖形,填寫下表:釘子數(shù)(n×n)S值2×223×32+34×42+3+()5×5()nn=2n=3n=4n=52.寫出(n-1)×(n-1)和n×n的兩個(gè)釘子板上,不同長度值的線段種數(shù)之間的關(guān)系;(用式子或語言表述均可)3.對(duì)n×n的釘子板,寫出用n表示S的代數(shù)式.13.(青島)提出問題:如圖①,在四邊形ABCD中,P是AD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系探究發(fā)現(xiàn):為了解決這個(gè)問題,我們可以先從一些簡單的、特殊的情形入手:⑴當(dāng)AP=AD時(shí)(如圖②):∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.∵PD=AD-AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四邊形ABCD-S△ABP-S△CDP=S四邊形ABCD-S△ABD-S△CDA=S四邊形ABCD-(S四邊形ABCD-S△DBC)-(S四邊形ABCD-S△ABC)=S△DBC+S△ABC.⑵當(dāng)AP=AD時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫出求解過程;⑶當(dāng)AP=AD時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為:________________;⑷一般地,當(dāng)AP=AD(n表示正整數(shù))時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫出求解過程;問題解決:當(dāng)AP=AD(0≤≤1)時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為:___________.第05講整式的加減考點(diǎn)·方法·破譯1.掌握同類項(xiàng)的概念,會(huì)熟練地進(jìn)行合并同類項(xiàng)的運(yùn)算.2.掌握去括號(hào)的法則,能熟練地進(jìn)行加減法的運(yùn)算.3.通過去括號(hào),合并同類項(xiàng)和整式加減的學(xué)習(xí),體驗(yàn)如何認(rèn)識(shí)和抓住事物的本質(zhì)特征.經(jīng)典·考題·賞析【例1】(濟(jì)南)如果和是同類項(xiàng),那么a、b的值分別是()A. B. C. D.【解法指導(dǎo)】同類項(xiàng)與系數(shù)的大小無關(guān),與字母的排列順序也無關(guān),只與是否含相同字母,且相同字母的指數(shù)是否相同有關(guān).解:由題意得,∴【變式題組】01.(天津)已知a=2,b=3,則()A.a(chǎn)x3y2與bm3n2是同類項(xiàng)B.3xay3與bx3y3是同類項(xiàng)C.Bx2a+1y4與ax5yb+1是同類項(xiàng) D.5m2bn5a與6n2bm5a是同類項(xiàng)02.若單項(xiàng)式2X2ym與-xny3是同類項(xiàng),則m=___________,n=___________.03.指出下列哪些是同類項(xiàng)⑴a2b與-ab2⑵xy2與3y2x(3)m-n與5(n-m)⑷5ab與6a2b【例2】若多項(xiàng)式合并同類項(xiàng)后是三次二項(xiàng)式,則m應(yīng)滿足的條件是___________.【解法指導(dǎo)】合并同類項(xiàng)時(shí),把同類項(xiàng)的系數(shù)相加,所得的結(jié)果作為系數(shù),字母和字母的指數(shù)不變.解:因?yàn)榛喓鬄槿味?xiàng)式,而5x3+3已經(jīng)為三次二項(xiàng)式,故二次項(xiàng)系數(shù)為0,即-2m-2=0,∴m=-1【變式題組】01.計(jì)算:-(2x2-3x-1)-2(x2-3x+5)+(x2+4x+3)02.(臺(tái)州)(2x-4y)+2y03.(佛山)m-n-(m+n)【例3】(泰州)求整式3x2-5x+2與2x2+x-3的差.【解法指導(dǎo)】在求兩個(gè)多項(xiàng)式的差時(shí),應(yīng)先將這兩個(gè)多項(xiàng)式分別用括號(hào)括起來,再去括號(hào),而去括號(hào)可以用口訣:去括號(hào),看符號(hào),是“+”號(hào),不變號(hào),是“-”號(hào),全變號(hào),去了括號(hào)后,有同類項(xiàng)再合并同類項(xiàng).解:(3x2-5x+2)-(2x2+x-3)=3x2-5x+2-2x2-x+3=x2-6x+5【變式題組】01.一個(gè)多項(xiàng)式加上-3x+2xy得x2-3xy+y2,則這個(gè)多項(xiàng)式是___________.02.減去2-3x等于6x2-3x-8的代數(shù)式是___________.【例4】當(dāng)a=,b=時(shí),求5(2a+b)2-3(3a+2b)2+2(3a+2b)的值.【解法指導(dǎo)】將(2a+b)2,(3a+2b)分別視為一個(gè)整體,因此可以先合并“同類項(xiàng)”再代入求值,對(duì)于多項(xiàng)式求值問題,通常先化簡再求值.解:5(2a+b)2-3(3a+2b)-3(2a+b)2+2(3a+2b)=(5-3)(2a+b)2+(2-3)(3a+2b)=2(2a+b)2-(3a+2b)∵a=,b=∴原式=【變式題組】01.(江蘇南京)先化簡再求值:(2a+1)2-2(2a+1)+3,其中a=2.02.已知a2+bc=14,b2-2bc=-6,求3a2+4b2-5bc.【例5】證明四位數(shù)的四個(gè)數(shù)字之和能被9整除,因此四位數(shù)也能被9整除.【解法指導(dǎo)】可用代數(shù)式表示四位數(shù)與其四個(gè)數(shù)之和的差,然后證這個(gè)差能被9整除.證明:設(shè)此四位數(shù)為1000a+100b+10c+d,則1000a+100b+10c+d-(a+b+c+d)=999a+99b+9c=9(111a+11b+c)∵111a+11b+c為整數(shù),∴1000a+100b+10c+d=9(111a+11b+c)+(a+b+c+d)∵9(111a+11b+c)與(a+b+c+d)均能被9整除∴1000a+100b+10c+d也能被9整除【變式題組】01.已知a<b<c,且x<y<z,下列式子中值最大的可能是()A.a(chǎn)x+by+cz B.a(chǎn)x+cy+bz C.bx+cy+az D.bx+ay+cz02.任何三位數(shù)減去此三位數(shù)的三個(gè)數(shù)字之和必為9的倍數(shù).【例6】將(x2-x+1)6展開后得a12x12+a11x11+……+a2x2+a1x+a0,求a12+a10+a8+……+a4+a2+a0的值.【解法指導(dǎo)】要求系數(shù)之和,但原式展開含有x項(xiàng),如何消去x項(xiàng),可采用賦特殊值法.解:令x=1得a12+a11+……+a1+a0=1令x=-1得a12-a11+a10-……-a1+a0=729兩式相加得2(a12+a10+a8+……+a2+a0)=730∴a12+a10+a8+……+a2+a0=365【變式題組】01.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0(1)當(dāng)x=0時(shí),有何結(jié)論;(2)當(dāng)x=1時(shí),有何結(jié)論;(3)當(dāng)x=-1時(shí),有何結(jié)論;(4)求a5+a3+a1的值.02.已知ax4+bx3+cx2+dx+e=(x-2)4(1)求a+b+c+d+e.(2)試求a+c的值.【例7】(希望杯培訓(xùn)題)已知關(guān)于x的二次多項(xiàng)式a(x3-x2+3x)+b(2x2+x)+x3-5,當(dāng)x=2時(shí)的值為-17.求當(dāng)x=-2時(shí),該多項(xiàng)式的值.【解法指導(dǎo)】設(shè)法求出a、b的值,解題的突破口是根據(jù)多項(xiàng)式降冪排列,多項(xiàng)式的次數(shù)等概念,挖掘隱含a、b的等式.解:原式=ax3-ax2+3ax+2bx2+bx+x3-5=(a+1)x3+(2b-a)x2+(3a+b)x-5∵原式中的多項(xiàng)式是關(guān)于x的二次多項(xiàng)式∴∴a=-1又當(dāng)x=2時(shí),原式的值為-17.∴(2b+1)22+=-17,∴b=-1∴原式=-x2-4x-5∴當(dāng)x=-2時(shí),原式=-(-2)2-4(-2)-5=-1【變式題組】01.(北京迎春杯)當(dāng)x=-2時(shí),代數(shù)式ax3-bx+1=-17.則x=-1時(shí),12ax-3bx3-5=___________.02.(吉林競(jìng)賽題)已知y=ax7+bx5+cx3+dx+e,其中a、b、c、d、e為常數(shù),當(dāng)x=2,y=23,x=-2,y=-35,則e為()A.-6 B. 6 C.-12 D.12演練鞏固·反饋提高01.(荊州)若-3x2my3與2x4yn是同類項(xiàng),則的值是()A.0 B.1C.7 D.-102.一個(gè)單項(xiàng)式減去x2-y2等于x2+y2,則這個(gè)單項(xiàng)式是()A.2x2 B.2y2C.-2x2 D.-2y203.若M和N都是關(guān)于x的二次三項(xiàng)式,則M+N一定是()A.二次三項(xiàng)式 B.一次多項(xiàng)式C.三項(xiàng)式 D.次數(shù)不高于2的整式04.當(dāng)x=3時(shí),多項(xiàng)式ax5+bx3+cx-10的值為7.則當(dāng)x=-3時(shí),這個(gè)多項(xiàng)式的值是()A.-3 B.-27C.-7 D.705.已知多項(xiàng)式A=x2+2y2-z2,B=-4x2+3y2+2z2,且A+B+C=0,則多項(xiàng)式c為()A.5x2-y2-z2 B.3x2-y2-3z2C.3x2-5y2-z2 D.3x2-5y2+z206.已知,則等于()A. B.1C. D.007.某人上山的速度為a千米/時(shí),后又沿原路下山,下山速度為b千米/時(shí),那么這個(gè)人上山和下山的平均速度是()A.千米/時(shí) B.千米/時(shí)C.千米/時(shí) D.千米/時(shí)08.使(ax2-2xy+y2)-(-ax2+bxy+2y2)=6x2-9xy+cy2成立的a、b、c的值分別是()A.3,7,1 B.-3,-7,-1C.3,-7,-1 D.-3,7,-109.k=___________時(shí),多項(xiàng)式3x2-2kxy+3y2+-4中不含xy項(xiàng).10.(宿遷)若2a-b=2,則6+8a-4b=___________11某項(xiàng)工程,甲單獨(dú)做需m天完成,甲乙合作需n天完成,那么乙獨(dú)做需要_______天完成.12.x2-xy=-3,2xy-y2=-8,則2x2-y2=___________.13.設(shè)a表示一個(gè)兩位數(shù),b表示一個(gè)三位數(shù),現(xiàn)在把a放b的左邊組成一個(gè)五位數(shù),設(shè)為x,再把b放a的左邊,也組成一個(gè)五位數(shù),設(shè)為y,試問x-y能被9整除嗎請(qǐng)說明理由.14.若代數(shù)式(x2+ax-2y+7)-(bx2-2x+9y-1)的值與字母x的取值無關(guān),求a、b的值.15.設(shè)A=x2-2xy-y2,B=-2x2+xy-y2,B=-2x2+xy-y2,當(dāng)x<y<0時(shí),比較A與B的值的大小.培優(yōu)升級(jí)·奧賽檢測(cè)01.A是一個(gè)三位數(shù),b是一位數(shù),如果把b置于a的右邊,則所得的四位數(shù)是()A.a(chǎn)b B.a(chǎn)+bC.1000b+a D.10a+b02.一個(gè)兩位數(shù)的個(gè)位數(shù)字和十位數(shù)字交換位置后,所得的數(shù)比原來的數(shù)大9,這樣的兩位數(shù)中,質(zhì)數(shù)有()A.1個(gè) B.3個(gè)C.5個(gè) D.6個(gè)03.有三組數(shù)x1,x2,x3;y1,y2,y3;z1,z2,z3,它們的平均數(shù)分別是a、b、c,那么x1+y1-z1,x2+y2-z2,x3+y3-z3的平均數(shù)是()A. B.C.A+b-c D.3(a+b-c)04.如果對(duì)于某一特定范圍內(nèi)x的任何允許值P=++……++的值恒為一常數(shù),則此值為()A.2 B.3C.4 D.505.(江蘇競(jìng)賽)已知a+b=0,a≠0,則化簡得()A.2a B.2bC.2 D.-206.如果a個(gè)同學(xué)在b小時(shí)內(nèi)共搬運(yùn)c塊磚,那么c個(gè)同學(xué)以同樣速度搬a塊磚,所需的小時(shí)數(shù)()A. B.C. D.07.如果單項(xiàng)式3xa+2yb-2與5x3ya+2的和為8x3ya+2,那么=_________.08.(第16屆“希望杯”邀請(qǐng)賽試題)如果x2+2x=3則x4+7x3+8x2-13x+15=_________.09.將1,2,3……100這100個(gè)自然數(shù),任意分為50組,每組兩個(gè)數(shù),現(xiàn)將每組的兩個(gè)數(shù)中任一數(shù)值記作a,另一個(gè)記作b,代入代數(shù)式()中進(jìn)行計(jì)算,求出其結(jié)果,50組數(shù)代入后可求的50個(gè)值,則這50個(gè)值的和的最大值時(shí)_________.10.已知兩個(gè)多項(xiàng)式A和B,A=nxn+4+x3-n-x3+x-3,B=3xn+4-x4+x3+nx2-2x-1,試判斷是否存在整數(shù)n,使A-B為五次六項(xiàng)式.11.設(shè)xyz都是整數(shù),且11整除7x+2y-5z.求證:11整除3x-7y+12z.12.(美國奧林匹克競(jìng)賽題)在一次游戲中,魔術(shù)師請(qǐng)一個(gè)而你隨意想一個(gè)三位數(shù)(a、b、c依次是這個(gè)數(shù)的百位、十位、個(gè)位數(shù)字)并請(qǐng)這個(gè)人算出5個(gè)數(shù),,,與的和N,把N告訴魔術(shù)師,于是魔術(shù)師就可以說出這個(gè)人所想的數(shù),現(xiàn)在設(shè)N=3194,請(qǐng)你當(dāng)魔術(shù)師,求出來.13.(太原市競(jìng)賽題)將一個(gè)三位數(shù)的中間數(shù)去掉,成為一個(gè)兩位數(shù),且滿足=9+4(如155=915+45).試求出所有這樣的三位數(shù).第06講一元一次方程概念和等式性質(zhì)考點(diǎn)·方法·破譯1.了解一元一次方程、等式的概念,能準(zhǔn)確進(jìn)行辨析.2.掌握一元一次方程的解、等式的性質(zhì)并會(huì)運(yùn)用.經(jīng)典·考題·賞析【例1】下面式子是方程的是()A.x+3B.x+y<3C.2x2+3=0D.3+4=2+5【解法指導(dǎo)】判斷式子是方程,首先要含有等號(hào),然后看它是否含有未知數(shù),只有同時(shí)具有這兩個(gè)條件的就是方程.2x2+3=0是一個(gè)無解的方程,但它是方程,故選擇C.【變式題組】01在①2x+3y-1.②2+5=15-8,③1-x=x+1,④2x+y=3中方程的個(gè)數(shù)是()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)02.(安徽合肥)在甲處工作的有272人,在乙處工作的有196人,如果要使乙處工作的人數(shù)是甲處工作人數(shù)的,應(yīng)從乙處調(diào)多少人到甲處若設(shè)應(yīng)從乙處調(diào)多少人到甲處,則下列方程正確的是()A.272+x=(196-x)B.(272-x)=196–xC.×272+x=196-xD.(272+x)=196-x03.根據(jù)下列條件列出方程:⑴3與x的和的2倍是14⑵x的2倍與3的差是5⑶x的與13的差的2倍等于1【例2】下列方程是一元一次方程的是()A.x2-2x-3=0B.2x-3y=4C.=3D.x=0【解法指導(dǎo)】判斷一個(gè)方程是一元一次方程,要滿足兩個(gè)條件:①只含有一個(gè)未知數(shù);②未知數(shù)的次數(shù)都是1,只有這樣的方程才是一元一次方程.故選擇D.【變式題組】01.以下式子:①-2+10=8;②5x+3=17;③xy;④x=2;⑤3x=1;⑥=4x;⑦(a+b)c=ac+bc;⑧ax+b其中等式有_______個(gè);一元一次方程有__________個(gè).02.(江油課改實(shí)驗(yàn)區(qū))若(m-2)=5是一元一次方程,則m的值為()A.±2B.-2C.2D.403.(天津)下列式子是方程的是()A.3×6=18B.3x-8c.5y+6D.y÷5=1【例3】若x=3是方程-kx+x+5=0的解,則k的值是()A.8B.3C.D.【解法指導(dǎo)】方程的解是使方程左右兩邊相等的未知數(shù)的值,所以-3k+3+5=0,k=故選擇D.【變式題組】01.(??冢﹛=2是下列哪個(gè)方程的解()A.3x=2x-1B.3x-2x+2=0C.3x-1=2x+1D.3x=2x-202.(自貢)方程3x+6=0的解的相反數(shù)是()A.2B.-2C.3D.-303.(上海)如果x=2是方程的根,那么a的值是()A.0B.2C.-2D.-604.(徐州)根據(jù)下列問題,設(shè)未知數(shù)并列出方程,然后估算方程的解:(1)某數(shù)的3倍比這個(gè)數(shù)大4;(2)小明年齡的3倍比他的爸爸的年齡多2歲,小明爸爸40歲,問小明幾歲(3)一個(gè)商店今年8月份出售A型電機(jī)300臺(tái),比去年同期增加50%,問去年8月份出售A型電機(jī)多少臺(tái)【例4】(太原)c為任意有理數(shù),對(duì)于等式a=2×進(jìn)入下面的變形,其結(jié)果仍然是等式的是()A.兩邊都減去-3cB.兩邊都乘以C.兩邊都除以2cD.左邊乘以2右邊加上c【解法指導(dǎo)】等式的性質(zhì)有兩條:①等式兩邊都加(或減)同一個(gè)數(shù)(或式子)結(jié)果仍相等;②等式兩邊都乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等,故選擇A.【變式題組】01.(青島)如果ma=mb,那么下列等式不一定成立的是()A.ma+1=mb+1B.ma?3=mb?3C.ma=mbD.a(chǎn)=b02.(大連)由等式3a?5=2a+b得到a=11的變形是()A.等式兩邊都除以3B.等式兩邊都加上(2a-5)C.等式兩邊都加上5D.等式兩邊都減去(2a-5)03.(昆明)下列變形符合等式性質(zhì)的是()A.如果2x?3=7,那么2x=7?xB.如果3x?2=x+1,那么3x?x=1?2C.如果-2x=5,那么x=-5+2D.如果-x=1,那么x=-3【例5】利用等式的性質(zhì)解下列方程:x+7=19⑵-5x=30⑶-x?5=4⑴解:兩邊都減去7得x+7?7=19?7合并同類項(xiàng)得x=12⑵解:兩邊都乘以得x=-6⑶解:兩邊都加上5得-x?5+5=4+5合并同類項(xiàng)得-x=9兩邊都乘以-3得x=-27【解法指導(dǎo)】要使方程x+7=19轉(zhuǎn)化為x=a(常數(shù))的形式,要去掉方程左邊的7,因此要減7,類似地考慮另兩個(gè)方程如何轉(zhuǎn)化為x=a的形式.【變式題組】01.(黃岡)某人在同一路段上走完一定的路程,去的速度是,回來的速度是,則他的平均速度為()A.B.C.D.02.(杭州)已知是方程2x?ay=3的一個(gè)解,那么a的值是()A.1B.3C.-3D.-103.(鄭州)下列變形正確的是()A.由x+3=4得x=7B.由a+b=0,得a=bC.由5x=4x-2得x=2D.由=0,得x=004.(南京)解方程()A.同乘以B.同除以C.同乘以-D.同除以【例6】根據(jù)所給出的條件列出方程:小華在銀行存了一筆錢,月利率為2%,利息稅為20%,5個(gè)月后,他一共取出了本息1080元,問他存人的本金是多少元(只列方程)【解法指導(dǎo)】生活中常碰見的儲(chǔ)蓄問題是中考中常見的一種題型,應(yīng)正確理解利息稅的含義,清楚本息和:本金+利息(除稅后)是解題的關(guān)鍵.題中的利息稅是把利息的20%扣除作為稅上交國家.解:設(shè)他存入的本金是x元,則5個(gè)月的利息是2%×5x=元,需交利息稅×20%=元,根據(jù)題意得:x+0.1x?=1080.【變式題組】01.(甘肅)商場(chǎng)在促銷活動(dòng)中,將標(biāo)價(jià)為200元的商品,在打八折的基礎(chǔ)上,再打八折銷售,則該商品現(xiàn)在售價(jià)是()A.160元B.128元C.120元D.8元02.(遼寧)根據(jù)下列條件,列出方程并解之:(1)某數(shù)的5倍減去4等于該數(shù)的6倍加上7,求某數(shù);(2)長方形的周長是50厘米,長與寬之比為3∶2,求長方形面積,【例7】(“希望杯”邀請(qǐng)賽試題)已知p、q都是質(zhì)數(shù),并且以x為未知數(shù)的一元一次方程px+5q=97的解是1.求代數(shù)式40p+101q+4的值.【解法指導(dǎo)】用代入法可得到p、q的關(guān)系式,再綜合運(yùn)用整數(shù)知識(shí):偶數(shù)+奇數(shù)=奇數(shù)、奇數(shù)+奇數(shù)=偶數(shù)、偶數(shù)+偶數(shù)=偶數(shù).解:把x=1代入方程px+5q=97,得p+5q=97,故p與5q中必有一個(gè)數(shù)是偶數(shù):(1)若p=2,則Sq=95,q=19,40p+l01q+4=40×2+101×19+4=2003;(2)若5q為偶數(shù),則q=2,p=87,但87不是質(zhì)數(shù),與題設(shè)矛盾,舍去.∴40p+l01q+4的值為2003.【變式題組】01.(廣東省競(jìng)賽題)已知=3x+1,則(64x2+48x+9)2009=_______.02.(第18屆“希望杯”競(jìng)賽題)對(duì)任意四個(gè)有理數(shù)a、b、c、d,定義新運(yùn)算:=ad?bc,已知=18,則x=()A.-1B.2C.3D.4演練鞏固反饋提高01.下面四個(gè)式子是方程的是()A.3+2=5B.x=2C.2x?5D.a(chǎn)2+2ab≠b202,下列方程是一元一次方程的是()A.x2?2x?3=0B.2x?3y=3C.x2?x?1=x2+1D.03.“x的一半比省的相反數(shù)大7”用方程表達(dá)這句話的意思是()A.=7?xB.+7=?xC.+7=xD.=x+704.(石家莊)把1200g洗衣粉分別裝入5個(gè)大小相同的瓶子中,除一瓶還差15g外,其余四瓶都裝滿了,問裝滿的每個(gè)瓶子中有洗衣粉多少克若設(shè)裝滿的每個(gè)瓶子有xg洗衣粉,列方程為()A.5x+15=1200B.5x-15=1200C.4x+15=1200D.4(x+15)=120005.在方程①3x?4=7;②=3;③5x?2=3;④3(x+1)=2(2x+1)中解為x=1的方程是()A.①②B.①③C.②④D.③④06.如果方程2n+b=n?1的解是n=-4,那么b的值是()A.3B.5C.-5D.-1307.若“△”是新規(guī)定的某種運(yùn)算符號(hào),設(shè)a△b=a2+b則(-2)△x=10中x為()A.-6B.6C.8D.-808.(武漢)小剛每分鐘跑am,用6分鐘可以跑完3000m,如果每分鐘多跑l0m,則可以提前1分鐘跑完3000m,下列等式不正確的是()A.(a+10)(b-1)=abB.(a?10)(b+l)=3000C.=a+10D.=b?109.已知關(guān)于x的方程(m+2)xm+4=2m-1是一元一次方程,則x=_______.10.在數(shù)值2,-3,4,-5中,是方程4x?2=10+x的解是_______.11.(福州)已知?1=,試用等式的性質(zhì)比較m、n的大?。?2.(西寧)已知方程a?2x=-4的解為x=4,求式子a3?a2?a的值.13.三個(gè)連續(xù)自然數(shù)的和是33,求這三個(gè)數(shù).14.某班有70人,其中會(huì)游泳的有52人,會(huì)滑冰的有33人,這兩項(xiàng)都不會(huì)的有6人,這兩項(xiàng)都會(huì)的有多少人15.甲車隊(duì)有司機(jī)80人,乙車隊(duì)有50人,要使兩個(gè)車隊(duì)的司機(jī)人數(shù)一樣多,應(yīng)該從甲車隊(duì)調(diào)多少個(gè)司機(jī)到乙車隊(duì)培優(yōu)升級(jí)奧賽檢測(cè)01.下列判斷中正確
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廚房裝飾翻新項(xiàng)目合同
- 農(nóng)村社會(huì)保障設(shè)施合同
- 市政供水管道更新工程合同
- 2024版電競(jìng)專用電腦定制協(xié)議3篇
- 二零二五年度房產(chǎn)測(cè)繪與土地市場(chǎng)分析服務(wù)協(xié)議2篇
- 二零二五年度商品房工程驗(yàn)收合同2篇
- 二零二五年度豬肉行業(yè)標(biāo)準(zhǔn)制定合同3篇
- 二零二五年度電子商務(wù)合同成立時(shí)點(diǎn)與合同效力研究3篇
- 二零二五年度板材出口貿(mào)易合同模板5篇
- 2025年南昌貨運(yùn)從業(yè)資格試題答案解析
- 快樂讀書吧:中國民間故事(專項(xiàng)訓(xùn)練)-2023-2024學(xué)年五年級(jí)語文上冊(cè)(統(tǒng)編版)
- 機(jī)動(dòng)車駕駛培訓(xùn)理論科目一考試題庫500題(含標(biāo)準(zhǔn)答案)
- 職業(yè)技術(shù)學(xué)院《工程力學(xué)》課程標(biāo)準(zhǔn)
- 新高考6選3選科指導(dǎo)與生涯規(guī)劃課件
- 科技成果技術(shù)成熟度評(píng)估規(guī)范
- 冠狀動(dòng)脈微血管疾病診斷和治療中國專家共識(shí)(2023版)解讀
- 2024年全國職業(yè)院校技能大賽“新型電力系統(tǒng)與維護(hù)”賽項(xiàng)考試題庫-上(單選題)
- 《列那狐的故事》導(dǎo)讀課 教學(xué)設(shè)計(jì)-2024-2025學(xué)年統(tǒng)編版語文五年級(jí)上冊(cè)
- 04S519小型排水構(gòu)筑物(含隔油池)圖集
- 2024中國糖尿病合并慢性腎臟病臨床管理共識(shí)解讀
- 2024年在職申碩同等學(xué)力英語真題試卷題后含答案及解析4
評(píng)論
0/150
提交評(píng)論