![代數(shù)式的值課件浙教版七年級數(shù)學(xué)上冊_第1頁](http://file4.renrendoc.com/view11/M01/2F/06/wKhkGWW5-jGARfCSAAC1Dey1vfk941.jpg)
![代數(shù)式的值課件浙教版七年級數(shù)學(xué)上冊_第2頁](http://file4.renrendoc.com/view11/M01/2F/06/wKhkGWW5-jGARfCSAAC1Dey1vfk9412.jpg)
![代數(shù)式的值課件浙教版七年級數(shù)學(xué)上冊_第3頁](http://file4.renrendoc.com/view11/M01/2F/06/wKhkGWW5-jGARfCSAAC1Dey1vfk9413.jpg)
![代數(shù)式的值課件浙教版七年級數(shù)學(xué)上冊_第4頁](http://file4.renrendoc.com/view11/M01/2F/06/wKhkGWW5-jGARfCSAAC1Dey1vfk9414.jpg)
![代數(shù)式的值課件浙教版七年級數(shù)學(xué)上冊_第5頁](http://file4.renrendoc.com/view11/M01/2F/06/wKhkGWW5-jGARfCSAAC1Dey1vfk9415.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
代數(shù)式的值課件浙教版七年級數(shù)學(xué)上冊匯報人:AA2024-01-25代數(shù)式的基本概念代數(shù)式的值整式的加減一元一次方程二元一次方程組不等式與不等式組contents目錄代數(shù)式的基本概念010102代數(shù)式的定義代數(shù)式可以表示為一個或多個項的和,每個項由系數(shù)、字母和字母的指數(shù)組成。代數(shù)式是由數(shù)字、字母通過有限次加、減、乘、除和乘方運算得到的數(shù)學(xué)表達式。整式由整式通過除法運算得到的代數(shù)式,形如$frac{A}{B}$,其中$A$和$B$均為整式,且$Bneq0$。分式根式含有開方運算的代數(shù)式,如$sqrt{x}$。由常數(shù)、變量、加、減、乘和乘方運算構(gòu)成的代數(shù)式,如$2x^2+3x-1$。代數(shù)式的分類代數(shù)式的書寫規(guī)范代數(shù)式中的乘號通常省略不寫,如$2x$表示$2timesx$。代數(shù)式中除法運算用分數(shù)線表示,如$frac{a}$表示$adivb$。代數(shù)式中數(shù)字和字母相乘時,數(shù)字寫在字母前面,如$4a$表示$4timesa$。當(dāng)字母和括號相乘時,應(yīng)將字母寫在括號前面,并用點表示乘法,如$acdot(b+c)$。帶分數(shù)應(yīng)寫成假分數(shù)形式,如$1frac{1}{2}$應(yīng)寫成$frac{3}{2}$。代數(shù)式的值02由數(shù)、字母和運算符號組成的數(shù)學(xué)表達式。代數(shù)式代數(shù)式的值舉例當(dāng)代數(shù)式中的字母取某一特定值時,代數(shù)式所對應(yīng)的數(shù)值結(jié)果。對于代數(shù)式$3x+2$,當(dāng)$x=1$時,代數(shù)式的值為$3times1+2=5$。030201代數(shù)式值的定義將字母的取值直接代入代數(shù)式進行計算。直接代入法當(dāng)字母的取值是一個整體時,將這個整體代入代數(shù)式進行計算。整體代入法通過已知條件或公式,先求出與代數(shù)式相關(guān)的其他量,再代入求值。間接求值法求代數(shù)式的值的方法唯一性可變性存在性有界性代數(shù)式值的性質(zhì)01020304對于給定的代數(shù)式和字母取值,代數(shù)式的值是唯一的。隨著字母取值的變化,代數(shù)式的值也會發(fā)生變化。對于任意給定的代數(shù)式和字母取值范圍,總存在至少一個使得代數(shù)式有意義的取值。對于某些特定的代數(shù)式和字母取值范圍,代數(shù)式的值可能存在上界或下界。整式的加減03由數(shù)字、字母和運算符號組成的代數(shù)式,其中運算符號僅限于加、減、乘、乘方。整式的定義單項式和多項式。單項式是只含有一個項的整式,多項式是由兩個或兩個以上的單項式組成的整式。整式的分類單項式中的數(shù)字因數(shù)稱為系數(shù),單項式中所有字母的指數(shù)之和稱為次數(shù)。整式的系數(shù)與次數(shù)整式的概念03整式的加減混合運算按照運算順序,先進行括號內(nèi)的運算,再進行乘除運算,最后進行加減運算。01整式的加法同類項合并,不同類項直接相加。02整式的減法轉(zhuǎn)化為加法運算,即減去一個整式等于加上這個整式的相反數(shù)。整式的加減法則
整式加減的應(yīng)用代數(shù)式求值通過給定的字母取值,代入整式進行計算,求出整式的值。實際問題中的應(yīng)用整式的加減運算在解決實際問題中有著廣泛的應(yīng)用,如計算面積、體積、路程等。方程與不等式的解法整式的加減運算是解方程和不等式的基礎(chǔ),通過對方程或不等式進行變形和化簡,可以求出未知數(shù)的值或確定未知數(shù)的取值范圍。一元一次方程04一元一次方程的一般形式ax+b=0(a、b為常數(shù),a≠0)。一元一次方程的解使方程左右兩邊相等的未知數(shù)的值。一元一次方程的定義只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程。一元一次方程的概念合并同類項法將方程中的同類項合并,簡化方程。移項法將方程中的某些項移到等號另一邊,使等號兩邊平衡。系數(shù)化為1法將方程中的系數(shù)化為1,得到未知數(shù)的解。一元一次方程的解法一元一次方程的應(yīng)用利用一元一次方程解決行程問題,如相遇問題、追及問題等。利用一元一次方程解決工程問題,如工作量、工作時間、工作效率之間的關(guān)系等。利用一元一次方程解決利潤問題,如進價、售價、利潤、折扣等之間的關(guān)系。利用一元一次方程解決其他實際問題,如分配問題、配套問題等。行程問題工程問題利潤問題其他實際問題二元一次方程組05含有兩個未知數(shù),且未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。二元一次方程組是由兩個或兩個以上的二元一次方程組成的方程組。二元一次方程組的解是滿足方程組中所有方程的未知數(shù)的值。二元一次方程組的概念通過代入或加減消元的方式,將二元一次方程組轉(zhuǎn)化為一元一次方程進行求解。代入消元法通過對方程組中兩個方程進行加減運算,消去一個未知數(shù),得到一個關(guān)于另一個未知數(shù)的一元一次方程,進而求解。加減消元法在平面直角坐標(biāo)系中分別畫出兩個方程的圖像,找出它們的交點,即為方程組的解。圖像法二元一次方程組的解法實際問題中,經(jīng)常需要列二元一次方程組來求解,如行程問題、工程問題、濃度問題等。通過列二元一次方程組,可以簡化問題的復(fù)雜度,提高解題效率。在解決實際問題時,需要注意單位的統(tǒng)一和方程的合理性。二元一次方程組的應(yīng)用不等式與不等式組06123用不等號連接兩個代數(shù)式所組成的數(shù)學(xué)式子。不等式的定義大于號“>”、小于號“<”、大于等于號“≥”、小于等于號“≤”以及不等于號“≠”。不等號的種類使不等式成立的未知數(shù)的值。不等式的解不等式的概念傳遞性可加性可乘性對稱性不等式的性質(zhì)如果a>b且b>c,那么a>c。如果a>b且c>0,那么ac>bc;如果a>b且c<0,那么ac<bc。如果a>b,那么a+c>b+c。如果a>b,那么-a<-b。一元一次不等式的解法01去分母、去括號、移項、合并同類項、系數(shù)化為1。一元一次不等式組的解法02分別求出每個不等式的解集,然后找出它們的公共解集。含有字母系數(shù)的不等式的解法03先確定字母系數(shù)的取值范圍,然后按照一元一次不等式的解法求解。不等式的解法由幾個含有同一個未知數(shù)的一元一次不等式組成的不等式組。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 材料運輸合同范本2025年:?;愤\輸安全管理服務(wù)協(xié)議3篇
- 2025年度建筑工程施工許可證重新申請代理合同
- 租房的租賃合同理
- 2025年度建筑工程木工分包施工質(zhì)量監(jiān)督合同
- 2025年度特種鋼材采購與應(yīng)用技術(shù)支持合同
- 2025年度貨車租賃合同模板:專業(yè)運輸服務(wù)協(xié)議
- 2025年度合伙人分伙協(xié)議書:生物制藥項目股權(quán)調(diào)整與分伙合同
- 2025年度網(wǎng)絡(luò)安全防護服務(wù)合同標(biāo)準(zhǔn)范本
- 2025年度精裝房屋裝修材料采購供應(yīng)合同
- 2025年度建筑工程施工環(huán)境保護應(yīng)急預(yù)案合同范本
- 07J912-1變配電所建筑構(gòu)造
- 人教版小學(xué)數(shù)學(xué)一年級下冊第1-4單元教材分析
- JTS-215-2018碼頭結(jié)構(gòu)施工規(guī)范
- 財務(wù)實習(xí)生合同
- 2024年長沙衛(wèi)生職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫含答案
- 地質(zhì)災(zāi)害危險性評估的基本知識
- (正式版)SHT 3075-2024 石油化工鋼制壓力容器材料選用規(guī)范
- 出租房房東消防培訓(xùn)
- 2024年度-小學(xué)語文教師經(jīng)驗交流
- 麻醉科質(zhì)量與安全管理小組工作計劃
- 認識比例尺人教版課件
評論
0/150
提交評論