版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省長郡中學(xué)、雅禮中學(xué)等四校2024屆數(shù)學(xué)高二下期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)命題:,;命題:若,則,則下列命題為真命題的是()A. B. C. D.2.設(shè)函數(shù)為自然對數(shù)的底數(shù))在上單調(diào)遞增,則實數(shù)的取值范圍為()A. B. C. D.3.只用四個數(shù)字組成一個五位數(shù),規(guī)定這四個數(shù)字必須同時使用,且同一數(shù)字不能相鄰出現(xiàn),這樣的五位數(shù)有()A. B. C. D.4.設(shè)等差數(shù)列{an}滿足3a8=5a15,且A.S23 B.S24 C.S5.正方形ABCD中,點E是DC的中點,點F是BC的一個三等分點,那么()A. B.C. D..6.拋物線的弦與過弦的端點的兩條切線所圍成的三角形常被稱為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點,則過弦的端點的兩條切線的交點在其準線上.設(shè)拋物線,弦過焦點,為阿基米德三角形,則的面積的最小值為()A. B. C. D.7.下列說法中,正確說法的個數(shù)是()①在用列聯(lián)表分析兩個分類變量與之間的關(guān)系時,隨機變量的觀測值越大,說明“與有關(guān)系”的可信度越大②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和0.3③已知兩個變量具有線性相關(guān)關(guān)系,其回歸直線方程為,若,,則A.0 B.1 C.2 D.38.若函數(shù)f(x)=2x+12xA.(-∞,-1) B.(C.(0,1) D.(1,+∞)9.已知函數(shù)是定義在上的奇函數(shù),若對于任意的實數(shù),都有,且當時,,則的值為()A.-1 B.-2 C.2 D.110.設(shè)是服從二項分布的隨機變量,又,,則與的值分別為(
)A., B., C., D.,11.已知展開式中項的系數(shù)為5,則=()A. B.π C.2π D.4π12.函數(shù)的最小正周期為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.隨機變量X的分布列是123P0.40.20.4則EX,DX分別是________14.設(shè)是定義在上的周期為2的函數(shù),當時,則__________.15.從四棱錐的八條棱中隨機選取兩條,則這兩條棱所在的直線為異面直線的概率是______.16.已知函數(shù)有六個不同零點,且所有零點之和為3,則的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)各項均為正數(shù)的數(shù)列的首項,前項和為,且.(1)求的通項公式:(2)若數(shù)列滿足,求的前項和.18.(12分)某公司生產(chǎn)一種產(chǎn)品,每年投入固定成本萬元.此外,每生產(chǎn)件這種產(chǎn)品還需要增加投入萬元.經(jīng)測算,市場對該產(chǎn)品的年需求量為件,且當出售的這種產(chǎn)品的數(shù)量為(單位:百件)時,銷售所得的收入約為(萬元).(1)若該公司這種產(chǎn)品的年產(chǎn)量為(單位:百件),試把該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤表示為年產(chǎn)量的函數(shù);(2)當該公司的年產(chǎn)量為多少時,當年所得利潤最大?最大為多少?19.(12分)已知函數(shù),.(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當時,若函數(shù)在上有兩個不同的零點,求的取值范圍.20.(12分)若二面角的平面角是直角,我們稱平面垂直于平面,記作.(1)如圖,已知,,,且,求證:;(2)如圖,在長方形中,,,將長方形沿對角線翻折,使平面平面,求此時直線與平面所成角的大小.21.(12分)選修4-5:不等式選講設(shè)函數(shù).(Ⅰ)若不等式的解集是,求實數(shù)的值;(Ⅱ)若對一切恒成立,求實數(shù)的取值范圍.22.(10分)已知函數(shù).(1)當時,解不等式;(2)若存在實數(shù)解,求實數(shù)a取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】分析:先判斷命題的真假,進而根據(jù)復(fù)合命題真假的真值表,可得結(jié)論.詳解:因為成立,所以,不存在,,故命題為假命題,為真命題;當時,成立,但不成立,故命題為假命題,為真命題;故命題均為假命題,命題為真命題,故選D.點睛:本題通過判斷或命題、且命題以及非命題的真假,綜合考查不等式的性質(zhì)以及特稱命題的定義,屬于中檔題.解答非命題、且命題與或命題真假有關(guān)的題型時,應(yīng)注意:(1)原命題與其非命題真假相反;(2)或命題“一真則真”;(3)且命題“一假則假”.2、D【解題分析】
根據(jù)單調(diào)性與導(dǎo)數(shù)的關(guān)系,有在上恒成立,將恒成立問題轉(zhuǎn)化成最值問題,利用導(dǎo)數(shù),研究的單調(diào)性,求出最小值,即可得到實數(shù)的取值范圍?!绢}目詳解】依題意得,在上恒成立,即在上恒成立,設(shè),令,,,所以,,,故選D?!绢}目點撥】本題主要考查函數(shù)單調(diào)性與導(dǎo)數(shù)的關(guān)系,將函數(shù)在某區(qū)間單調(diào)轉(zhuǎn)化為導(dǎo)數(shù)或者的恒成立問題,再將其轉(zhuǎn)化為最值問題,是解決此類問題的常規(guī)思路。3、B【解題分析】
以重復(fù)使用的數(shù)字為數(shù)字為例,采用插空法可確定符合題意的五位數(shù)的個數(shù);重復(fù)使用每個數(shù)字的五位數(shù)個數(shù)一樣多,通過倍數(shù)關(guān)系求得結(jié)果.【題目詳解】當重復(fù)使用的數(shù)字為數(shù)字時,符合題意的五位數(shù)共有:個當重復(fù)使用的數(shù)字為時,與重復(fù)使用的數(shù)字為情況相同滿足題意的五位數(shù)共有:個本題正確選項:【題目點撥】本題考查排列組合知識的綜合應(yīng)用,關(guān)鍵是能夠明確不相鄰的問題采用插空法的方式來進行求解;易錯點是在插空時,忽略數(shù)字相同時無順序問題,從而錯誤的選擇排列來進行求解.4、C【解題分析】因a8=a1+7d,a15=a1+14d,故由題設(shè)3a8=5a155、D【解題分析】
用向量的加法和數(shù)乘法則運算。【題目詳解】由題意:點E是DC的中點,點F是BC的一個三等分點,∴。故選:D。【題目點撥】本題考查向量的線性運算,解題時可根據(jù)加法法則,從向量的起點到終點,然后結(jié)合向量的數(shù)乘運算即可得。6、B【解題分析】
利用導(dǎo)數(shù)的知識,可得,即三角形為直角三角形,利用基本不等式,可得當直線垂直軸時,面積取得最小值.【題目詳解】設(shè),過A,B的切線交于Q,直線的方程為:,把直線的方程代入得:,所以,則,由導(dǎo)數(shù)的知識得:,所以,所以,所以,因為,當時,可得的最大值為,故選B.【題目點撥】本題是一道與數(shù)學(xué)文化有關(guān)的試題,如果能靈活運用阿基米德三角形的結(jié)論,即當直線過拋物線的焦點,則切線與切線互相垂直,能使運算量變得更小.7、D【解題分析】
①分類變量與的隨機變量越大,說明“A與B有關(guān)系”的可信度越大②對同取對數(shù),再進行化簡,可進行判斷③根據(jù)線性回歸方程,將,代入可求出值【題目詳解】對于①,分類變量A與B的隨機變量越大,說明“A與B有關(guān)系”的可信度越大,正確;
對于②,,兩邊取對數(shù),可得,
令,可得,.即②正確;
對于③,根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為中,,,則.故
③正確因此,本題正確答案是:①②③答案選D【題目點撥】二聯(lián)表中越大,說明“A與B有關(guān)系”的可信度越大;將變量轉(zhuǎn)化成一般線性方程時,可根據(jù)系數(shù)對應(yīng)關(guān)系對號入座進行求解;線性回歸方程的求解可根據(jù),代入求出值8、C【解題分析】
由f(x)為奇函數(shù),根據(jù)奇函數(shù)的定義可求a,代入即可求解不等式.【題目詳解】∵f(x)=2x∴f(﹣x)=﹣f(x)即2整理可得,1+∴1﹣a?2x=a﹣2x∴a=1,∴f(x)=2∵f(x))=2x∴2x+12整理可得,2x∴1<2x<2解可得,0<x<1故選C.【題目點撥】本題主要考查了奇函數(shù)的定義的應(yīng)用及分式不等式的求解,屬于基礎(chǔ)試題.9、A【解題分析】
利用函數(shù)的奇偶性以及函數(shù)的周期性轉(zhuǎn)化求解即可.【題目詳解】因為f(x)是奇函數(shù),且周期為2,所以f(﹣2017)+f(2018)=﹣f(2017)+f(2018)=﹣f(1)+f(0).當x∈[0,2)時,f(x)=log2(x+1),所以f(﹣2017)+f(2018)=﹣1+0=﹣1.故選:A.【題目點撥】本題考查函數(shù)的奇偶性以及函數(shù)的周期性的應(yīng)用,考查計算能力.10、B【解題分析】分析:根據(jù)二項分布的期望和方差的計算公式,列出方程,即可求解答案.詳解:由題意隨機變量,又由,且,解得,故選B.點睛:本題主要考查了二項分布的期望與方差的計算公式的應(yīng)用,其中熟記二項分布的數(shù)學(xué)期望和方差的計算公式是解答本題的關(guān)鍵,著重考查了推理與運算能力.11、B【解題分析】
通過展開式中項的系數(shù)為列方程,解方程求得的值.利用幾何法求得定積分的值.【題目詳解】展開式中項為即,條件知,則;于是被積函數(shù)圖像,圍成的圖形是以為圓心,以2為半徑的圓的,利用定積分的幾何意義可得,選B.【題目點撥】本小題主要考查二項式展開式,考查幾何法計算定積分,屬于中檔題.12、B【解題分析】
先利用二倍角的余弦公式化簡函數(shù)解析式,然后利用周期公式可求答案.【題目詳解】函數(shù)的最小正周期為:本題正確選項:【題目點撥】本題考查三角函數(shù)的周期性及其求法,考查二倍角的余弦公式,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2,0.1【解題分析】
于已知分布列,故可直接使用公式求期望、方差.【題目詳解】Eξ=1×0.4+2×0.2+3×0.4=2,Dξ=(1﹣2)2×0.4+(2﹣2)2×0.2+(3﹣2)2×0.4=0.1.故答案為:2,0.1.【題目點撥】本題主要考查離散型隨機變量的分布和數(shù)學(xué)期望、方差等基礎(chǔ)知識,熟記期望、方差的公式是解題的關(guān)鍵.14、【解題分析】試題分析:考點:1.函數(shù)的性質(zhì);2.周期函數(shù).15、【解題分析】
基本事件總數(shù),這兩條棱所在的直線為異面直線包含的基本事件個數(shù),由此能求出這兩條棱所在的直線為異面直線的概率.【題目詳解】解:從四棱錐的八條棱中隨機選取兩條,基本事件總數(shù),這兩條棱所在的直線為異面直線包含的基本事件個數(shù),則這兩條棱所在的直線為異面直線的概率是.故答案為:.【題目點撥】本題考查概率的求法.求古典概型概率時,可采用列舉法將基本事件一一列出;也可結(jié)合計數(shù)原理的思想.16、【解題分析】根據(jù)題意,有,于是函數(shù)關(guān)于對稱,結(jié)合所有的零點的平均數(shù)為,可得,此時問題轉(zhuǎn)化為函數(shù),在上與直線有個公共點,此時,當時,函數(shù)的導(dǎo)函數(shù),于是函數(shù)單調(diào)遞增,且取值范圍是,當時,函數(shù)的導(dǎo)函數(shù),考慮到是上的單調(diào)遞增函數(shù),且,于是在上有唯一零點,記為,進而函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,在處取得極小值,如圖:接下來問題的關(guān)鍵是判斷與的大小關(guān)系,注意到,,函數(shù),在上與直線有個公共點,的取值范圍是,故答案為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】
(1)已知,可得,則,并驗證時,是否滿足等式,從而知數(shù)列是等差數(shù)列,求其通項即可。(2)因為=,是由等差數(shù)列和等比數(shù)列的對應(yīng)項的積組成的數(shù)列,用錯位相減法即可求和?!绢}目詳解】(1)因為,①所以當時,②①-②得:,因為的各項均為正數(shù),所以,且,所以由①知,,即,又因為,所以故,所以數(shù)列是首項為,公差為的等差數(shù)列(2)由(1)得,所以,③④③-④得,當且時,,;當時,由③得綜上,數(shù)列的前項和【題目點撥】本題主要考查了等差數(shù)列,等比數(shù)列以及數(shù)列的求和。利用等比數(shù)列求和公式時,當公比是字母時,要注意討論公式的范圍。屬于中檔題。18、(1);(2)當年產(chǎn)量為件時,所得利潤最大.【解題分析】分析:(1)利用銷售額減去成本即可得到年利潤關(guān)于年產(chǎn)量的函數(shù)解析式;(2)分別利用二次函數(shù)的性質(zhì)以及函數(shù)的單調(diào)性,求得兩段函數(shù)值的取值范圍,從而可得結(jié)果.詳解:(1)由題意得:;(2)當時,函數(shù)對稱軸為,故當時,;當時,函數(shù)單調(diào)遞減,故,所以當年產(chǎn)量為件時,所得利潤最大.點睛:本題主要考查閱讀能力及建模能力、分段函數(shù)的解析式,屬于難題.與實際應(yīng)用相結(jié)合的題型也是高考命題的動向,這類問題的特點是通過現(xiàn)實生活的事例考查書本知識,解決這類問題的關(guān)鍵是耐心讀題、仔細理解題,只有吃透題意,才能將實際問題轉(zhuǎn)化為數(shù)學(xué)模型進行解答.理解本題題意的關(guān)鍵是構(gòu)造分段函數(shù),構(gòu)造分段函數(shù)時,做到分段合理、不重不漏,分段函數(shù)的最值是各段的最大(最小)者的最大者(最小者).19、(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ).【解題分析】
(Ⅰ)將代入函數(shù)的解析式,求出該函數(shù)的定義域與導(dǎo)數(shù),解不等式和并與定義域取交集可分別得出該函數(shù)的單調(diào)遞減區(qū)間和遞增區(qū)間;(Ⅱ)求出函數(shù)的導(dǎo)數(shù),分析函數(shù)在區(qū)間上的單調(diào)性,由題中條件得出,于此可解出實數(shù)的取值范圍?!绢}目詳解】(Ⅰ)函數(shù)的定義域為,當時,,,令,即,解得,令,即,解得,∴函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ),,由得,,當時,,當時,,∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,∵,,∴函數(shù)在上有兩個不同的零點,只需,解得,∴的取值范圍為.【題目點撥】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,利用導(dǎo)數(shù)研究函數(shù)的零點個數(shù)問題,解題時常用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值,將零點個數(shù)轉(zhuǎn)化為函數(shù)極值與最值的符號問題,若函數(shù)中含有單參數(shù)問題,可利用參變量分離思想求解,考查化歸與轉(zhuǎn)化思想,屬于中等題。20、(1)證明見解析;(2).【解題分析】
(1)在內(nèi)過點作,根據(jù)題意得到,進而可得出結(jié)論;(2)過點作于點,連接,得到即是直線與平面所成角,根據(jù)題中條件,求出,,由余弦定理得到,進而可求出結(jié)果.【題目詳解】(1)在內(nèi)過點作,因為,,且,所以,因為,所以;(2)過點作于點,連接,因為平面平面,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年首期款全付房產(chǎn)買賣合同書3篇
- 二零二五版?zhèn)€人信用重建借款委托擔保合同3篇
- 二零二五版包裝行業(yè)綠色認證與推廣合同3篇
- 二零二五年陵園墓地購置與家族紀念館建設(shè)合同3篇
- 二零二五版知識產(chǎn)權(quán)保護技術(shù)服務(wù)合同泄密責任細則3篇
- 二零二五年度餐飲企業(yè)食品安全追溯平臺建設(shè)合同3篇
- 二零二五年度食品供應(yīng)與餐飲服務(wù)合同2篇
- 二零二五年防火門制造與施工安裝一體化合同模板3篇
- 2025年度影視基地場地租賃及拍攝制作合同范本3篇
- 2025年復(fù)合材料堆放場地租賃及環(huán)保處理合同3篇
- 建筑材料供應(yīng)鏈管理服務(wù)合同
- 孩子改名字父母一方委托書
- 2024-2025學(xué)年人教版初中物理九年級全一冊《電與磁》單元測試卷(原卷版)
- 江蘇單招英語考綱詞匯
- 礦山隱蔽致災(zāi)普查治理報告
- 2024年事業(yè)單位財務(wù)工作計劃例文(6篇)
- 2024年工程咨詢服務(wù)承諾書
- 青桔單車保險合同條例
- 車輛使用不過戶免責協(xié)議書范文范本
- 《獅子王》電影賞析
- 2023-2024學(xué)年天津市部分區(qū)九年級(上)期末物理試卷
評論
0/150
提交評論