




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年山東省高密市高考適應(yīng)性考試數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線:的左、右兩個(gè)焦點(diǎn)分別為,,若存在點(diǎn)滿足,則該雙曲線的離心率為()A.2 B. C. D.52.已知復(fù)數(shù)滿足,則的共軛復(fù)數(shù)是()A. B. C. D.3.若,則下列關(guān)系式正確的個(gè)數(shù)是()①②③④A.1 B.2 C.3 D.44.已知為等腰直角三角形,,,為所在平面內(nèi)一點(diǎn),且,則()A. B. C. D.5.我國(guó)著名數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個(gè)大于的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”(注:如果一個(gè)大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個(gè)整數(shù)為素?cái)?shù)),在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,則的概率是()A. B. C. D.6.如圖,在正方體中,已知、、分別是線段上的點(diǎn),且.則下列直線與平面平行的是()A. B. C. D.7.已知向量,,若,則與夾角的余弦值為()A. B. C. D.8.已知向量,(其中為實(shí)數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.《九章算術(shù)》“少?gòu)V”算法中有這樣一個(gè)數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分?jǐn)?shù)進(jìn)行通分約簡(jiǎn),又用最下面的分母去遍乘諸(未通者)分子和以通之?dāng)?shù),逐個(gè)照此同樣方法,直至全部為整數(shù),例如:及時(shí),如圖:記為每個(gè)序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.176410.函數(shù)f(x)=lnA. B. C. D.11.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]12.我國(guó)南北朝時(shí)的數(shù)學(xué)著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級(jí)較高的二等人所得黃金比等級(jí)較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤二、填空題:本題共4小題,每小題5分,共20分。13.已知向量滿足,且,則_________.14.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務(wù),每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當(dāng)甲、乙兩人都參加時(shí),他們參加社區(qū)服務(wù)的日期不相鄰,那么不同的安排種數(shù)為______________.(用數(shù)字作答)15.安排名男生和名女生參與完成項(xiàng)工作,每人參與一項(xiàng),每項(xiàng)工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數(shù)字作答).16.函數(shù)的極大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為提供市民的健身素質(zhì),某市把四個(gè)籃球館全部轉(zhuǎn)為免費(fèi)民用(1)在一次全民健身活動(dòng)中,四個(gè)籃球館的使用場(chǎng)數(shù)如圖,用分層抽樣的方法從四場(chǎng)館的使用場(chǎng)數(shù)中依次抽取共25場(chǎng),在中隨機(jī)取兩數(shù),求這兩數(shù)和的分布列和數(shù)學(xué)期望;(2)設(shè)四個(gè)籃球館一個(gè)月內(nèi)各館使用次數(shù)之和為,其相應(yīng)維修費(fèi)用為元,根據(jù)統(tǒng)計(jì),得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據(jù)①的結(jié)論,試估計(jì)這四個(gè)籃球館月惠值最大時(shí)的值參考數(shù)據(jù)和公式:,18.(12分)已知函數(shù).(Ⅰ)求的值;(Ⅱ)若,且,求的值.19.(12分)移動(dòng)支付(支付寶及微信支付)已經(jīng)漸漸成為人們購(gòu)物消費(fèi)的一種支付方式,為調(diào)查市民使用移動(dòng)支付的年齡結(jié)構(gòu),隨機(jī)對(duì)100位市民做問卷調(diào)查得到列聯(lián)表如下:(1)將上列聯(lián)表補(bǔ)充完整,并請(qǐng)說明在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為支付方式與年齡是否有關(guān)?(2)在使用移動(dòng)支付的人群中采用分層抽樣的方式抽取10人做進(jìn)一步的問卷調(diào)查,從這10人隨機(jī)中選出3人頒發(fā)參與獎(jiǎng)勵(lì),設(shè)年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.(參考公式:(其中)20.(12分)已知函數(shù)(1)當(dāng)時(shí),求不等式的解集;(2)若函數(shù)的值域?yàn)锳,且,求a的取值范圍.21.(12分)在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:(2)若成等比數(shù)列,求a的值。22.(10分)已知函數(shù).(1)若,求證:.(2)討論函數(shù)的極值;(3)是否存在實(shí)數(shù),使得不等式在上恒成立?若存在,求出的最小值;若不存在,請(qǐng)說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點(diǎn)睛】本題主要考查雙曲線的定義及離心率,離心率求解時(shí),一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.2、B【解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算法則和共軛復(fù)數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法的運(yùn)算法則,考查了復(fù)數(shù)的共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.3、D【解析】
a,b可看成是與和交點(diǎn)的橫坐標(biāo),畫出圖象,數(shù)形結(jié)合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點(diǎn)睛】本題考查利用函數(shù)圖象比較大小,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.4、D【解析】
以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運(yùn)算,可求得點(diǎn)的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點(diǎn)睛】本題考查平面向量基本定理的運(yùn)用、數(shù)量積的運(yùn)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.5、B【解析】
先列舉出不超過的素?cái)?shù),并列舉出所有的基本事件以及事件“在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素?cái)?shù)有:、、、、、,在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點(diǎn)睛】本題考查古典概型概率的計(jì)算,一般利用列舉法列舉出基本事件,考查計(jì)算能力,屬于基礎(chǔ)題.6、B【解析】
連接,使交于點(diǎn),連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點(diǎn),連接、,則為的中點(diǎn),在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點(diǎn),且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點(diǎn)睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.7、B【解析】
直接利用向量的坐標(biāo)運(yùn)算得到向量的坐標(biāo),利用求得參數(shù)m,再用計(jì)算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算、向量數(shù)量積的應(yīng)用,考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想.8、A【解析】
結(jié)合向量垂直的坐標(biāo)表示,將兩個(gè)條件相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷出充分、必要條件.【詳解】由,則,所以;而當(dāng),則,解得或.所以“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本小題考查平面向量的運(yùn)算,向量垂直,充要條件等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,應(yīng)用意識(shí).9、A【解析】
根據(jù)題目所給的步驟進(jìn)行計(jì)算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點(diǎn)睛】本小題主要考查合情推理,考查中國(guó)古代數(shù)學(xué)文化,屬于基礎(chǔ)題.10、C【解析】因?yàn)閒x=lnx2-4x+4x-23=11、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,所以f(x)在(-∞,2]上單調(diào)遞增,在[2,+∞)上單調(diào)遞減,故選B.12、C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由數(shù)量積的運(yùn)算律求得,再由數(shù)量積的定義可得結(jié)論.【詳解】由題意,∴,即,∴.故答案為:.【點(diǎn)睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運(yùn)算律是解題關(guān)鍵.14、5040.【解析】分兩類,一類是甲乙都參加,另一類是甲乙中選一人,方法數(shù)為。填5040.【點(diǎn)睛】利用排列組合計(jì)數(shù)時(shí),關(guān)鍵是正確進(jìn)行分類和分步,分類時(shí)要注意不重不漏.在本題中,甲與乙是兩個(gè)特殊元素,對(duì)于特殊元素“優(yōu)先法”,所以有了分類。本題還涉及不相鄰問題,采用“插空法”。15、1296【解析】
先從4個(gè)男生選2個(gè)一組,將4人分成三組,然后從4個(gè)女生選2個(gè)一組,將4人分成三組,然后全排列即可.【詳解】由于每項(xiàng)工作至少由名男生和名女生完成,則先從4個(gè)男生選2個(gè)一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【點(diǎn)睛】本題主要考查了排列組合的應(yīng)用,考查了學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力.16、【解析】
先求函的定義域,再對(duì)函數(shù)進(jìn)行求導(dǎo),再解不等式得單調(diào)區(qū)間,進(jìn)而求得極值點(diǎn),即可求出函數(shù)的極大值.【詳解】函數(shù),,,令得,,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減,當(dāng)時(shí),函數(shù)取到極大值,極大值為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力,求解時(shí)注意定義域優(yōu)先法則的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析,12.5(2)①②20【解析】
(1)運(yùn)用分層抽樣,結(jié)合總場(chǎng)次為100,可求得的值,再運(yùn)用古典概型的概率計(jì)算公式可求解果;(2)①由公式可計(jì)算的值,進(jìn)而可求與的回歸直線方程;②求出,再對(duì)函數(shù)求導(dǎo),結(jié)合單調(diào)性,可估計(jì)這四個(gè)籃球館月惠值最大時(shí)的值.【詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數(shù)之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因?yàn)樗?,,;②,設(shè),所以當(dāng)遞增,當(dāng)遞減所以約惠值最大值時(shí)的值為20【點(diǎn)睛】本題考查直方圖的實(shí)際應(yīng)用,涉及求概率,平均數(shù)、擬合直線和導(dǎo)數(shù)等問題,關(guān)鍵是要讀懂題意,屬于中檔題.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)直接代入再由誘導(dǎo)公式計(jì)算可得;(Ⅱ)先得到,再根據(jù)利用兩角差的余弦公式計(jì)算可得.【詳解】解:(Ⅰ);(Ⅱ)因?yàn)樗?,由得,又因?yàn)椋?,所以,所?【點(diǎn)睛】本題考查了三角函數(shù)中的恒等變換應(yīng)用,屬于中檔題.19、(1)列聯(lián)表見解析,在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為支付方式與年齡有關(guān);(2)分布列見解析,期望為.【解析】
(1)根據(jù)題中所給的條件補(bǔ)全列聯(lián)表,根據(jù)列聯(lián)表求出觀測(cè)值,把觀測(cè)值同臨界值進(jìn)行比較,得到能在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為支付方式與年齡有關(guān).(2)首先確定的取值,求出相應(yīng)的概率,可得分布列和數(shù)學(xué)期望.【詳解】(1)根據(jù)題意及列聯(lián)表可得完整的列聯(lián)表如下:35歲以下(含35歲)35歲以上合計(jì)使用移動(dòng)支付401050不使用移動(dòng)支付104050合計(jì)5050100根據(jù)公式可得,所以在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為支付方式與年齡有關(guān).(2)根據(jù)分層抽樣,可知35歲以下(含35歲)的人數(shù)為8人,35歲以上的有2人,所以獲得獎(jiǎng)勵(lì)的35歲以下(含35歲)的人數(shù)為,則的可能為1,2,3,且,,,其分布列為123.【點(diǎn)睛】獨(dú)立性檢驗(yàn)依據(jù)的值結(jié)合附表數(shù)據(jù)進(jìn)行判斷,另外,離散型隨機(jī)變量的分布列,在求解的過程中,注意變量的取值以及對(duì)應(yīng)的概率要計(jì)算正確,注意離散型隨機(jī)變量的期望公式的使用,屬于中檔題目.20、(1)或(2)【解析】
(1)分類討論去絕對(duì)值即可;(2)根據(jù)條件分a<﹣3和a≥﹣3兩種情況,由[﹣2,1]?A建立關(guān)于a的不等式,然后求出a的取值范圍.【詳解】(1)當(dāng)a=﹣1時(shí),f(x)=|x+1|.∵f(x)≤|2x+1|﹣1,∴當(dāng)x≤﹣1時(shí),原不等式可化為﹣x﹣1≤﹣2x﹣2,∴x≤﹣1;當(dāng)時(shí),原不等式可化為x+1≤﹣2x﹣2,∴x≤﹣1,此時(shí)不等式無解;當(dāng)時(shí),原不等式可化為x+1≤2x,∴x≥1,綜上,原不等式的解集為{x|x≤﹣1或x≥1}.(2)當(dāng)a<﹣3時(shí),,∴函數(shù)g(x)的值域A={x|3+a≤x≤﹣a﹣3}.∵[﹣2,1]?A,∴,∴a≤﹣5;當(dāng)a≥﹣3時(shí),,∴函數(shù)g(x)的值域A={x|﹣a﹣3≤x≤3+a}.∵[﹣2,1]?A,∴,∴a≥﹣1,綜上,a的取值范圍為(﹣∞,﹣5]∪[﹣1,+∞).【點(diǎn)睛】本題考查了絕對(duì)值不等式的解法和利用集合間的關(guān)于求參數(shù)的取值范圍,考查了轉(zhuǎn)化思想和分類討論思想,屬于中檔題.21、(1)l的普通方程;C的直角坐標(biāo)方程;(2).【解析】
(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式即可把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用消去參數(shù)即可得到直線的直角坐標(biāo)方程;(2)將直線的參數(shù)方程,代入曲線的方程,利用參數(shù)的幾何
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- KTV清潔合同范本
- 出租電纜鋼板合同范本
- 個(gè)人賺取傭金合同范例
- 中介公租房合同范本
- 住家阿姨雇傭合同范本
- 農(nóng)村改造房出售合同范本
- 兄妹房屋出賣合同范例
- 產(chǎn)權(quán)代辦合同范本
- 專利權(quán)轉(zhuǎn)讓合同范本
- 創(chuàng)業(yè)辦公司合同范本
- 高效液相含量測(cè)定計(jì)算公式
- 六宮格數(shù)獨(dú)解題技巧
- 公安機(jī)關(guān)通用告知書模板
- 工程款支付審批流程圖
- 人教版七年級(jí)歷史下冊(cè)第一單元填空題
- 封頭重量和容積計(jì)算
- 《小學(xué)數(shù)學(xué)課程與教學(xué)》教學(xué)大綱
- 《手機(jī)攝影》全套課件(完整版)
- 彩色學(xué)生電子小報(bào)手抄報(bào)模板春節(jié)41
- 筒形件拉深成形工藝分析及模具設(shè)計(jì)
- JGJ_T231-2021建筑施工承插型盤扣式鋼管腳手架安全技術(shù)標(biāo)準(zhǔn)(高清-最新版)
評(píng)論
0/150
提交評(píng)論