2024屆安徽省肥東中學高考數(shù)學一模試卷含解析_第1頁
2024屆安徽省肥東中學高考數(shù)學一模試卷含解析_第2頁
2024屆安徽省肥東中學高考數(shù)學一模試卷含解析_第3頁
2024屆安徽省肥東中學高考數(shù)學一模試卷含解析_第4頁
2024屆安徽省肥東中學高考數(shù)學一模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆安徽省肥東中學高考數(shù)學一模試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線C:(,)的離心率是3,焦點到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.2.空氣質(zhì)量指數(shù)是反映空氣狀況的指數(shù),指數(shù)值趨小,表明空氣質(zhì)量越好,下圖是某市10月1日-20日指數(shù)變化趨勢,下列敘述錯誤的是()A.這20天中指數(shù)值的中位數(shù)略高于100B.這20天中的中度污染及以上(指數(shù))的天數(shù)占C.該市10月的前半個月的空氣質(zhì)量越來越好D.總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好3.函數(shù)fxA. B.C. D.4.已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標準方程為()A. B. C. D.5.下列函數(shù)中,在定義域上單調(diào)遞增,且值域為的是()A. B. C. D.6.如圖,正方形網(wǎng)格紙中的實線圖形是一個多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對 B.3對C.4對 D.5對7.已知,則的值等于()A. B. C. D.8.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.9.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.2510.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.11.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.12.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.設,滿足條件,則的最大值為__________.14.已知函數(shù)的部分圖象如圖所示,則的值為____________.15.(5分)函數(shù)的定義域是____________.16.已知拋物線,點為拋物線上一動點,過點作圓的切線,切點分別為,則線段長度的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,滿足,,,,恰為等比數(shù)列的前3項.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和為;若對均滿足,求整數(shù)的最大值;(3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項公式;若不存在,請說明理由.18.(12分)在中,角的對邊分別為,若.(1)求角的大??;(2)若,為外一點,,求四邊形面積的最大值.19.(12分)中國古建筑中的窗飾是藝術(shù)和技術(shù)的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長方形,長30cm,寬26cm,其內(nèi)部窗芯(不含長方形邊框)用一種條形木料做成,由兩個菱形和六根支條構(gòu)成,整個窗芯關(guān)于長方形邊框的兩條對稱軸成軸對稱.設菱形的兩條對角線長分別為xcm和ycm,窗芯所需條形木料的長度之和為L.(1)試用x,y表示L;(2)如果要求六根支條的長度均不小于2cm,每個菱形的面積為130cm2,那么做這樣一個窗芯至少需要多長的條形木料(不計榫卯及其它損耗)?20.(12分)的內(nèi)角的對邊分別為,若(1)求角的大?。?)若,求的周長21.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點,與平面所成的角的正弦值為,求的長.22.(10分)已知函數(shù),設的最小值為m.(1)求m的值;(2)是否存在實數(shù)a,b,使得,?并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)焦點到漸近線的距離,可得,然后根據(jù),可得結(jié)果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點,一條漸近線則點到的距離為,由所以,則又所以所以焦距為:故選:A【點睛】本題考查雙曲線漸近線方程,以及之間的關(guān)系,識記常用的結(jié)論:焦點到漸近線的距離為,屬基礎題.2、C【解析】

結(jié)合題意,根據(jù)題目中的天的指數(shù)值,判斷選項中的命題是否正確.【詳解】對于,由圖可知天的指數(shù)值中有個低于,個高于,其中第個接近,第個高于,所以中位數(shù)略高于,故正確.對于,由圖可知天的指數(shù)值中高于的天數(shù)為,即占總天數(shù)的,故正確.對于,由圖可知該市月的前天的空氣質(zhì)量越來越好,從第天到第天空氣質(zhì)量越來越差,故錯誤.對于,由圖可知該市月上旬大部分指數(shù)在以下,中旬大部分指數(shù)在以上,所以該市月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好,故正確.故選:【點睛】本題考查了對折線圖數(shù)據(jù)的分析,讀懂題意是解題關(guān)鍵,并能運用所學知識對命題進行判斷,本題較為基礎.3、A【解析】

由f12=e-14>0排除選項D;【詳解】由f12=e-14>0,可排除選項D,f-1=-e【點睛】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及x→04、B【解析】

由拋物線的定義轉(zhuǎn)化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點M到其焦點F的距離比點M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,,所以拋物線的標準方程為:y2=2x.故選B.【點睛】本題考查了拋物線的簡單性質(zhì)的應用,拋物線方程的求法,屬于基礎題.5、B【解析】

分別作出各個選項中的函數(shù)的圖象,根據(jù)圖象觀察可得結(jié)果.【詳解】對于,圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤;對于,的圖象如下圖所示:則在定義域上單調(diào)遞增,且值域為,正確;對于,的圖象如下圖所示:則函數(shù)單調(diào)遞增,但值域為,錯誤;對于,的圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤.故選:.【點睛】本題考查函數(shù)單調(diào)性和值域的判斷問題,屬于基礎題.6、C【解析】

畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對.【點睛】本題考查了空間幾何體的三視圖,考查了四棱錐的結(jié)構(gòu)特征,考查了面面垂直的證明,屬于中檔題.7、A【解析】

由余弦公式的二倍角可得,,再由誘導公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學生對二倍角公式的應用,要求學生熟練掌握三角函數(shù)中的誘導公式,屬于簡單題8、B【解析】

列出每一次循環(huán),直到計數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.9、D【解析】

由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.10、D【解析】

以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點,以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.設,則,.設平面的法向量為,則取,得.設直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點睛】本題考查了向量法求解線面角,考查了學生空間想象,邏輯推理,數(shù)學運算的能力,屬于中檔題.11、A【解析】

令,進而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數(shù)在研究函數(shù)最值中的應用,考查了轉(zhuǎn)化的數(shù)學思想,恰當?shù)挠靡粋€未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.12、C【解析】

設拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經(jīng)過拋物線的焦點,,是與的交點,又軸,∴可設點坐標為,代入,解得,又∵點在準線上,設過點的的垂線與交于點,,∴.故應選C.【點睛】本題考查拋物線的性質(zhì),解題時只要設出拋物線的標準方程,就能得出點坐標,從而求得參數(shù)的值.本題難度一般.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出可行域,由得,平移直線,數(shù)形結(jié)合可求的最大值.【詳解】作出可行域如圖所示由得,則是直線在軸上的截距.平移直線,當直線經(jīng)過可行域內(nèi)的點時,最小,此時最大.解方程組,得,..故答案為:.【點睛】本題考查簡單的線性規(guī)劃,屬于基礎題.14、【解析】

由圖可得的周期、振幅,即可得,再將代入可解得,進一步求得解析式及.【詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:【點睛】本題考查由圖象求解析式及函數(shù)值,考查學生識圖、計算等能力,是一道中檔題.15、【解析】

要使函數(shù)有意義,則,即,解得,故函數(shù)的定義域是.16、【解析】

連接,易得,可得四邊形的面積為,從而可得,進而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當最小時,最小,設點,則,所以當時,,則,當點的橫坐標時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.【點睛】本題考查直線與圓的位置關(guān)系的應用,考查拋物線上的動點到定點的距離的求法,考查學生的計算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(2),(2),的最大整數(shù)是2.(3)存在,【解析】

(2)由可得(),然后把這兩個等式相減,化簡得,公差為2,因為,,為等比數(shù)列,所以,化簡計算得,,從而得到數(shù)列的通項公式,再計算出,,,從而可求出數(shù)列的通項公式;(2)令,化簡計算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個可看成一個數(shù)列的前項和,再寫出其前()項和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當時,,即當時,①②①-②得,整理得,又因為各項均為正數(shù)的數(shù)列.故是從第二項的等差數(shù)列,公差為2.又恰為等比數(shù)列的前3項,故,解得.又,故,因為也成立.故是以為首項,2為公差的等差數(shù)列.故.即2,4,8恰為等比數(shù)列的前3項,故是以為首項,公比為的等比數(shù)列,故.綜上,(2)令,則所以數(shù)列是遞增的,若對均滿足,只要的最小值大于即可因為的最小值為,所以,所以的最大整數(shù)是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數(shù)列,【點睛】此題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式,最值,恒成立問題,考查了推理能力與計算能力,屬于中檔題.18、(1)(2)【解析】

(1)根據(jù)正弦定理化簡等式可得,即;(2)根據(jù)題意,利用余弦定理可得,再表示出,表示出四邊形,進而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當時,四邊形的面積取最大值,最大值為.【點睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應用,屬于基礎題.19、(1)(2)【解析】試題分析:(1)由條件可先求水平方向每根支條長,豎直方向每根支條長為,因此所需木料的長度之和L=(2)先確定范圍由可得,再由面積為130cm2,得,轉(zhuǎn)化為一元函數(shù),令,則在上為增函數(shù),解得L有最小值.試題解析:(1)由題意,水平方向每根支條長為cm,豎直方向每根支條長為cm,菱形的邊長為cm.從而,所需木料的長度之和L=cm.(2)由題意,,即,又由可得.所以.令,其導函數(shù)在上恒成立,故在上單調(diào)遞減,所以可得.則=.因為函數(shù)和在上均為增函數(shù),所以在上為增函數(shù),故當,即時L有最小值.答:做這樣一個窗芯至少需要cm長的條形木料.考點:函數(shù)應用題20、(1)(2)11【解析】

(1)利用二倍角公式將式子化簡成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論