下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
向量公式1.向量的有關(guān)概念(1)向量:既有大小又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:長度等于0的向量,其方向是任意的.(3)單位向量:長度等于1個單位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共線向量,規(guī)定:0與任一向量共線.(5)相等向量:長度相等且方向相同的向量.(6)相反向量:長度相等且方向相反的向量.2.向量的線性運算向量運算定義法則(或幾何意義)運算律加法求兩個向量和的運算三角形法則平行四邊形法則交換律:a+b=b+a.(2)結(jié)合律:(a+b)+c=a+(b+c)減法求a與b的相反向量-b的和的運算叫做a與b的差三角形法則a-b=a+(-b)3.向量的數(shù)乘運算及其幾何意義(1)定義:實數(shù)λ與向量a的積是一個向量,這種運算叫向量的數(shù)乘,記作λa,它的長度與方向規(guī)定如下:①|(zhì)λa|=|λ||a|;②當(dāng)λ>0時,λa與a的方向相同;當(dāng)λ<0時,λa與a的方向相反;當(dāng)λ=0時,λa=0.(2)運算律:設(shè)λ,μ是兩個實數(shù),則①λ(μa)=(λμ)a;②(λ+μ)a=λa+μa;③λ(a+b)=λa+λb.4.共線向量定理向量a(a≠0)與b共線的充要條件是存在唯一一個實數(shù)λ,使得b=λa.5平面向量坐標(biāo)運算(1)向量加法、減法、數(shù)乘向量及向量的模設(shè)a=(x1,y1),b=(x2,y2),則a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|=eq\r(x\o\al(2,1)+y\o\al(2,1)).(2)向量坐標(biāo)的求法向量的起點是坐標(biāo)原點,則終點坐標(biāo)即為向量的坐標(biāo).②設(shè)A(x1,y1),B(x2,y2),則eq\o(AB,\s\up6(→))=(x2-x1,y2-y1),|eq\o(AB,\s\up6(→))|=eq\r(x2-x12+y2-y12).6平面向量共線的坐標(biāo)表示設(shè)a=(x1,y1),b=(x2,y2),其中b≠0,當(dāng)且僅當(dāng)x1y2-x2y1=0時,向量a,b共線.7兩個向量的夾角已知兩個非零向量a和b(如圖),作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,則∠AOB=θ(0°≤θ≤180°)叫做向量a與b的夾角,當(dāng)θ=0°時,a與b同向;當(dāng)θ=180°時,a與b反向;如果a與b的夾角是90°,我們說a與b垂直,記作a⊥b.8兩個向量的數(shù)量積的定義已知兩個非零向量a與b,它們的夾角為θ,則數(shù)量|a||b|cosθ叫做a與b的數(shù)量積(或內(nèi)積),記作a·b,即a·b=|a||b|cosθ,規(guī)定零向量與任一向量的數(shù)量積為0,即0·a=0.9向量數(shù)量積的幾何意義數(shù)量積a·b等于a的長度|a|與b在a的方向上的投影|b|cosθ的數(shù)量積.10數(shù)量積的性質(zhì)、b都是非零向量,e是單位向量,θ為a與b(或e)的夾角.則(1)e·a=a·e=|a|cosθ;(2)a⊥b?a·b=0;(3)當(dāng)a與b同向時,a·b=|a|·|b|;當(dāng)a與b反向時,a·b=-|a||b|,特別的,a·a=|a|2或者|a|=eq\r(a·a);(4)cosθ=eq\f(a·b,|a||b|);(5)|a·b|≤|a||b|.11向量數(shù)量積的運算律(1)a·b=b·a;(2)λa·b=λ(a·b)=a·(λb);(3)(a+b)·c=a·c+b·c.12平面向量數(shù)量積的坐標(biāo)運算設(shè)向量a=(x1,y1),b=(x2,y2),向量a與b的夾角為θ,則(1)a·b=x1x2+y1y2;(2)|a|=eq\r(x\o\al(2,1)+y\o\al(2,1));(3)cos〈a,b〉=eq\f(x1x2+y1y2,\r(x\o\al(2,1)+y\o\al(2,1))\r(x\o\al(2,2)+y\o\al(2,2)));(4)a⊥b?a·b=0?x1x2+y1y2=0.13若A(x1,y1),B(x2,y2),eq\o(AB,\s\up6(→))=a,則|a|=eq\r(x1-x22+y1-y22)(平面內(nèi)兩點間的距離公式).1.已知|a|=3,|b|=2,若a·b=-3,則a與b的夾角為().A.eq\f(π,3)B.eq\f(π,4)C.eq\f(2π,3)D.eq\f(3π,4)2.若向量a,b,c滿足a∥b,且a⊥c,則c·(a+2b)=().A.4B.3C.2D.03.已知|a|=|b|=2,(a+2b)·(a-b)=-2,則a與b的夾角為________.4.已知是夾角為的兩個單位向量,若,則k的值為5.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.(1)求a與b的夾角θ;(2)求|a+b|和|a-b|.6.已知平面向量a=(1,x),b=(2x+3,-x)(x∈R).(1)若a⊥b,求x的值;(2)若a∥b,求|a-b|.7.設(shè)向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ).(1)若a與b-2c垂直,求tan(α+β)的值;(2)若tanαtanβ=16,求證:a∥b.練習(xí)1.若向量a=(1,1),b=(-1,1),c=(4,2),則c=().A.3a+bB.3a-bC.-a+3bD.a(chǎn)+3b2.已知向量,若,則=()A.B.C.D.3.已知向量的夾角為60°且,則的值為() A.10B.C.7D.494.若,,與的夾角為,則等于()A. B. C. D.5.已知=(5,-3),C(-1,3),=2,則點D的坐標(biāo)為A.(11,9)B.(4,0)C.(9,3)D.(9,-3)6.已知向量=(3,4),=(sinα,cosα),且∥,則tanα=A.B.-C.D.-7.已知,,且,,則點C的坐標(biāo)為()A.B.C.D.8已知向量a、b滿足:|a|=2,|b|=2,|a-b|=2,則|a+b|=A.B.C. D.9.已知|a|=1,|b|=2,a與b的夾角為60°,c=2a+3b,d=ka-b(k∈R),且c⊥d,那么k的值為()A.-6B.6C.D.10.,,,且,則向量的夾角為A.30°B.60°C.120°D.150°11.已知向量與都是單位向量,它們的夾角為且,則實數(shù)A.B. C.D.或12.設(shè)向量,則下列結(jié)論中正確的是A. B. C.垂直 D.13.已知向量、滿足,則A.0B.C.4D.814.已知向量a=(1,2),b=(2,-3),若向量c滿足(c+a)∥b,c⊥(a+b),則c=().A.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(7,9),\f(7,3))) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(7,3),-\f(7,9)))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(7,3),\f(7,9))) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(7,9),-\f(7,3)))15.已知向量,若,則________。16.已知向量,且,則▲.17.已知向量與的夾角為,且,,,則=.18.若,,若,則向量與的夾角為▲.19.已知,,則與的夾角為.20.若向量,滿足且與的夾角為,則21.已知非零向量a、b,若a+2b與a-2b互相垂直,則22.已知=1,=2,與的夾角為60°。(1)求:,()·();(2)求:。23.已知:向量,且。(1)求實數(shù)的值;(2)當(dāng)與平行時,求實數(shù)的值。24.已知向量,.(Ⅰ)求的值;(Ⅱ)若,且,求的值.25.已知向量,,(=1\*ROMANI)若∥,求的值;(=2\*ROMANII)若,求的值。26.已知向量,.(1)若∥,求實數(shù)k的值;(2)若,求實數(shù)的值;27.平面上有點A(2,–1),B(1,4)D(4,–3)三點,點C在直線AB上;⑴計算;⑵若,連接DC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)事服務(wù)協(xié)議書(2篇)
- 《將廣告加以完善》課件
- 2025年滬科版九年級化學(xué)下冊階段測試試卷
- 2025年滬科版七年級生物下冊階段測試試卷
- 2025年湘教版二年級語文上冊月考試卷
- 2024年華師大版九年級科學(xué)上冊階段測試試卷
- 2024年晉中眼科醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2025年蘇教版八年級物理下冊階段測試試卷
- 《小學(xué)美術(shù)火柴人》課件
- 2024年昌吉州中醫(yī)醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 鐵路工程-軌道工程施工工藝及方案
- 福建省福州市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細(xì)及行政區(qū)劃代碼
- 《高中語文文言斷句》一等獎優(yōu)秀課件
- 上海市中小學(xué)生學(xué)籍信息管理系統(tǒng)
- (完整版)自動感應(yīng)門施工方案
- [QC成果]提高剪力墻施工質(zhì)量一次合格率
- 8站小車呼叫的plc控制
- _ 基本粒子與宏觀物體內(nèi)在聯(lián)系
- 象棋比賽積分編排表
- 小學(xué)贛美版六年級美術(shù)上冊第二十課向往和平課件(16張)ppt課件
- DPP4抑制劑比較篇PPT課件
評論
0/150
提交評論