![海南省文昌市文昌中學2024年高考沖刺數(shù)學模擬試題含解析_第1頁](http://file4.renrendoc.com/view12/M05/2D/23/wKhkGWXMOauACShvAAICAxSo7i4819.jpg)
![海南省文昌市文昌中學2024年高考沖刺數(shù)學模擬試題含解析_第2頁](http://file4.renrendoc.com/view12/M05/2D/23/wKhkGWXMOauACShvAAICAxSo7i48192.jpg)
![海南省文昌市文昌中學2024年高考沖刺數(shù)學模擬試題含解析_第3頁](http://file4.renrendoc.com/view12/M05/2D/23/wKhkGWXMOauACShvAAICAxSo7i48193.jpg)
![海南省文昌市文昌中學2024年高考沖刺數(shù)學模擬試題含解析_第4頁](http://file4.renrendoc.com/view12/M05/2D/23/wKhkGWXMOauACShvAAICAxSo7i48194.jpg)
![海南省文昌市文昌中學2024年高考沖刺數(shù)學模擬試題含解析_第5頁](http://file4.renrendoc.com/view12/M05/2D/23/wKhkGWXMOauACShvAAICAxSo7i48195.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
海南省文昌市文昌中學2024年高考沖刺數(shù)學模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A.1 B.2 C.3 D.42.已知是函數(shù)的極大值點,則的取值范圍是A. B.C. D.3.若不相等的非零實數(shù),,成等差數(shù)列,且,,成等比數(shù)列,則()A. B. C.2 D.4.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}5.已知點是拋物線的對稱軸與準線的交點,點為拋物線的焦點,點在拋物線上且滿足,若取得最大值時,點恰好在以為焦點的橢圓上,則橢圓的離心率為()A. B. C. D.6.函數(shù)f(x)=2x-3A.[32C.[327.存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經(jīng)過點,則橢圓離心率的取值范圍是()A. B. C. D.8.波羅尼斯(古希臘數(shù)學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.9.已知,則下列不等式正確的是()A. B.C. D.10.已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.211.若復數(shù)滿足,則()A. B. C. D.12.已知、分別為雙曲線:(,)的左、右焦點,過的直線交于、兩點,為坐標原點,若,,則的離心率為()A.2 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若關于的方程在定義域上有四個不同的解,則實數(shù)的取值范圍是_______.14.二項式的展開式中所有項的二項式系數(shù)之和是64,則展開式中的常數(shù)項為______.15.如圖所示,邊長為1的正三角形中,點,分別在線段,上,將沿線段進行翻折,得到右圖所示的圖形,翻折后的點在線段上,則線段的最小值為_______.16.已知兩圓相交于兩點,,若兩圓圓心都在直線上,則的值是________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當時,求函數(shù)的極值;(2)設函數(shù)的導函數(shù)為,求證:函數(shù)有且僅有一個零點.18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)把的參數(shù)方程化為極坐標方程:(2)求與交點的極坐標.19.(12分)在直角坐標系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.20.(12分)已知函數(shù).(1)若函數(shù)不存在單調遞減區(qū)間,求實數(shù)的取值范圍;(2)若函數(shù)的兩個極值點為,,求的最小值.21.(12分)如圖,設點為橢圓的右焦點,圓過且斜率為的直線交圓于兩點,交橢圓于點兩點,已知當時,(1)求橢圓的方程.(2)當時,求的面積.22.(10分)已知橢圓的右焦點為,直線被稱作為橢圓的一條準線,點在橢圓上(異于橢圓左、右頂點),過點作直線與橢圓相切,且與直線相交于點.(1)求證:.(2)若點在軸的上方,當?shù)拿娣e最小時,求直線的斜率.附:多項式因式分解公式:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先用公差表示出,結合等比數(shù)列求出.【詳解】,因為成等比數(shù)列,所以,解得.【點睛】本題主要考查等差數(shù)列的通項公式.屬于簡單題,化歸基本量,尋求等量關系是求解的關鍵.2、B【解析】
方法一:令,則,,當,時,,單調遞減,∴時,,,且,∴,即在上單調遞增,時,,,且,∴,即在上單調遞減,∴是函數(shù)的極大值點,∴滿足題意;當時,存在使得,即,又在上單調遞減,∴時,,所以,這與是函數(shù)的極大值點矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點,須在的左側附近,,即;在的右側附近,,即.易知,時,與相切于原點,所以根據(jù)與的圖象關系,可得,故選B.3、A【解析】
由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數(shù)列,所以,又,,成等比數(shù)列,所以,消去得,所以,解得或,因為,,是不相等的非零實數(shù),所以,此時,所以.故選:A【點睛】本題考查了等差等比數(shù)列的綜合應用,考查了學生概念理解,轉化劃歸,數(shù)學運算的能力,屬于中檔題.4、A【解析】
解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點睛】此題考查求集合的并集,關鍵在于準確求解不等式,根據(jù)描述法表示的集合,準確寫出集合中的元素.5、B【解析】
設,利用兩點間的距離公式求出的表達式,結合基本不等式的性質求出的最大值時的點坐標,結合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設,因為是拋物線的對稱軸與準線的交點,點為拋物線的焦點,所以,則,當時,,當時,,當且僅當時取等號,此時,,點在以為焦點的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.6、A【解析】
根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因為函數(shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數(shù)fx的定義域為a,b,則函數(shù)fgx7、D【解析】
根據(jù)題意利用垂直直線斜率間的關系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎題.8、D【解析】
求得定點M的軌跡方程可得,解得a,b即可.【詳解】設A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.9、D【解析】
利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關系,不等式的基本性質,利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.10、D【解析】
分析可得,再去絕對值化簡成標準形式,進而根據(jù)雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.11、C【解析】
把已知等式變形,利用復數(shù)代數(shù)形式的除法運算化簡,再由復數(shù)模的計算公式求解.【詳解】解:由,得,∴.故選C.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法,是基礎題.12、D【解析】
作出圖象,取AB中點E,連接EF2,設F1A=x,根據(jù)雙曲線定義可得x=2a,再由勾股定理可得到c2=7a2,進而得到e的值【詳解】解:取AB中點E,連接EF2,則由已知可得BF1⊥EF2,F(xiàn)1A=AE=EB,設F1A=x,則由雙曲線定義可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,則EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,則e故選:D.【點睛】本題考查雙曲線定義的應用,考查離心率的求法,數(shù)形結合思想,屬于中檔題.對于圓錐曲線中求離心率的問題,關鍵是列出含有中兩個量的方程,有時還要結合橢圓、雙曲線的定義對方程進行整理,從而求出離心率.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可在定義域上有四個不同的解等價于關于原點對稱的函數(shù)與函數(shù)的圖象有兩個交點,運用參變分離和構造函數(shù),進而借助導數(shù)分析單調性與極值,畫出函數(shù)圖象,即可得到所求范圍.【詳解】已知定義在上的函數(shù)若在定義域上有四個不同的解等價于關于原點對稱的函數(shù)與函數(shù)f(x)=lnx-x(x>0)的圖象有兩個交點,聯(lián)立可得有兩個解,即可設,則,進而且不恒為零,可得在單調遞增.由可得時,單調遞減;時,單調遞增,即在處取得極小值且為作出的圖象,可得時,有兩個解.故答案為:【點睛】本題考查利用利用導數(shù)解決方程的根的問題,還考查了等價轉化思想與函數(shù)對稱性的應用,屬于難題.14、【解析】
由二項式系數(shù)性質求出,由二項展開式通項公式得出常數(shù)項的項數(shù),從而得常數(shù)項.【詳解】由題意,.展開式通項為,由得,∴常數(shù)項為.故答案為:.【點睛】本題考查二項式定理,考查二項式系數(shù)的性質,掌握二項展開式通項公式是解題關鍵.15、【解析】
設,,在中利用正弦定理得出關于的函數(shù),從而可得的最小值.【詳解】解:設,,則,,∴,在中,由正弦定理可得,即,∴,∴當即時,取得最小值.故答案為.【點睛】本題考查正弦定理解三角形的應用,屬中檔題.16、【解析】
根據(jù)題意,相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上,列出方程解得即可得到結論.【詳解】由,,設的中點為,根據(jù)題意,可得,且,解得,,,故.故答案為:.【點睛】本題考查相交弦的性質,解題的關鍵在于利用相交弦的性質,即兩圓的連心線垂直平分相交弦,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解析】
(1)當時,函數(shù),其定義域為,則,設,,易知函數(shù)在上單調遞增,且,所以當時,,即;當時,,即,所以函數(shù)在上單調遞減,在上單調遞增,所以函數(shù)在處取得極小值,為,無極大值.(2)由題可得函數(shù)的定義域為,,設,,顯然函數(shù)在上單調遞增,當時,,,所以函數(shù)在內(nèi)有一個零點,所以函數(shù)有且僅有一個零點;當時,,,所以函數(shù)有且僅有一個零點,所以函數(shù)有且僅有一個零點;當時,,,因為,所以,,又,所以函數(shù)在內(nèi)有一個零點,所以函數(shù)有且僅有一個零點.綜上,函數(shù)有且僅有一個零點.18、(1)(2)與交點的極坐標為,和【解析】
(1)先把曲線化成直角坐標方程,再化簡成極坐標方程;(2)聯(lián)立曲線和曲線的方程解得即可.【詳解】(1)曲線的直角坐標方程為:,即.的參數(shù)方程化為極坐標方程為;(2)聯(lián)立可得:,與交點的極坐標為,和.【點睛】本題考查了參數(shù)方程,直角坐標方程,極坐標方程的互化,也考查了極坐標方程的聯(lián)立,屬于基礎題.19、(1),;(2).【解析】
(1)先把直線和曲線的參數(shù)方程化成普通方程,再化成極坐標方程;(2)聯(lián)立極坐標方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數(shù)方程是為參數(shù)),消去參數(shù)得直角坐標方程為:.轉換為極坐標方程為:,即.曲線的參數(shù)方程是(為參數(shù)),轉換為直角坐標方程為:,化為一般式得化為極坐標方程為:.
(2)由于,得,.所以,所以,由于,所以,所以.【點睛】本題主要考查參數(shù)方程與普通方程的互化、直角坐標方程與極坐標方程的互化,熟記公式即可,屬于??碱}型.20、(1)(2)【解析】分析:(1)先求導,再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范圍.(2)先由得到,再求得,再構造函數(shù)再利用導數(shù)求其最小值.詳解:(1)由函數(shù)有意義,則由且不存在單調遞減區(qū)間,則在上恒成立,上恒成立(2)由知,令,即由有兩個極值點故為方程的兩根,,,則由由,則上單調遞減,即由知綜上所述,的最小值為.點睛:(1)本題主要考查利用導數(shù)求函數(shù)的單調區(qū)間和極值,考查利用導數(shù)求函數(shù)的最值,意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題的難點有兩個,其一是求出,其二是構造函數(shù)再利用導數(shù)求其最小值.21、(1)(2)【解析】
(1)先求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度環(huán)保產(chǎn)業(yè)園區(qū)規(guī)劃設計咨詢合同
- 貴州2024年貴州省重點產(chǎn)業(yè)人才蓄水池崗位專項簡化程序招聘17人筆試歷年參考題庫附帶答案詳解
- 衡陽2025年湖南衡陽市市直衛(wèi)健系統(tǒng)人才引進177人筆試歷年參考題庫附帶答案詳解
- 鹽城江蘇鹽城市教育局招錄政府購買服務用工人員筆試歷年參考題庫附帶答案詳解
- 梧州2025年廣西梧州市公安局招聘輔警274人筆試歷年參考題庫附帶答案詳解
- 2025年中國天然生漆市場調查研究報告
- 2025年中國內(nèi)飾件市場調查研究報告
- 2025至2031年中國高光澤丙烯酸外墻涂料行業(yè)投資前景及策略咨詢研究報告
- 2025年舞廳效果燈項目可行性研究報告
- 2025至2031年中國羽絨衫行業(yè)投資前景及策略咨詢研究報告
- DB12-T 3034-2023 建筑消防設施檢測服務規(guī)范
- 銷售人員崗位職責培訓
- 助理醫(yī)師醫(yī)院協(xié)議書(2篇)
- 短暫性腦缺血發(fā)作
- 父親歸來那一天(2022年四川廣元中考語文試卷記敘文閱讀題及答案)
- 小學數(shù)學五年級上冊奧數(shù)應用題100道(含答案)
- 工業(yè)機器人編程語言:Epson RC+ 基本指令集教程
- 2024年同等學力申碩統(tǒng)考英語卷
- 2023.05.06-廣東省建筑施工安全生產(chǎn)隱患識別圖集(高處作業(yè)吊籃工程部分)
- 2024年上海高考數(shù)學真題試題(原卷版+含解析)
- JTG 3362-2018公路鋼筋混凝土及預應力混凝土橋涵設計規(guī)范
評論
0/150
提交評論