




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
試卷第=page22頁(yè),共=sectionpages22頁(yè)資料整理【淘寶店鋪:向陽(yáng)百分百】試卷第=page11頁(yè),共=sectionpages11頁(yè)資料整理【淘寶店鋪:向陽(yáng)百分百】中考數(shù)學(xué)幾何專(zhuān)項(xiàng)練習(xí):最值問(wèn)題之阿氏圓一、填空題1.如圖,正方形SKIPIF1<0的邊長(zhǎng)為4,SKIPIF1<0的半徑為2,SKIPIF1<0為SKIPIF1<0上的動(dòng)點(diǎn),則SKIPIF1<0的最大值是.【答案】2【分析】解法1,如圖:以SKIPIF1<0為斜邊構(gòu)造等腰直角三角形SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,推得SKIPIF1<0,因?yàn)镾KIPIF1<0,求出SKIPIF1<0即可求出答案.解法2:如圖:連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,在SKIPIF1<0上做點(diǎn)SKIPIF1<0,使SKIPIF1<0,連接SKIPIF1<0,證明SKIPIF1<0SKIPIF1<0SKIPIF1<0,在SKIPIF1<0上做點(diǎn)SKIPIF1<0,使SKIPIF1<0,連接SKIPIF1<0,證明SKIPIF1<0SKIPIF1<0SKIPIF1<0,接著推導(dǎo)出SKIPIF1<0,最后證明SKIPIF1<0SKIPIF1<0SKIPIF1<0,即可求解.【詳解】解法1如圖:以SKIPIF1<0為斜邊構(gòu)造等腰直角三角形SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0正方形SKIPIF1<0SKIPIF1<0,SKIPIF1<0又SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0與SKIPIF1<0中SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故答案為:2.解法2如圖:連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0根據(jù)題意正方形SKIPIF1<0的邊長(zhǎng)為4,SKIPIF1<0的半徑為2SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0上做點(diǎn)SKIPIF1<0,使SKIPIF1<0,則SKIPIF1<0,連接SKIPIF1<0在SKIPIF1<0與SKIPIF1<0中SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0上做點(diǎn)SKIPIF1<0,使SKIPIF1<0,則SKIPIF1<0,連接SKIPIF1<0在SKIPIF1<0與SKIPIF1<0中SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,則SKIPIF1<0SKIPIF1<0如圖所示連接SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0在SKIPIF1<0與SKIPIF1<0中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故答案為:2.【點(diǎn)睛】本題考查正方形的性質(zhì),相似三角形,勾股定理等知識(shí),難度較大,熟悉以上知識(shí)點(diǎn)運(yùn)用是解題關(guān)鍵.2.如圖所示的平面直角坐標(biāo)系中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是第一象限內(nèi)一動(dòng)點(diǎn),SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0的最小值是.【答案】SKIPIF1<0【分析】取點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0.根據(jù)SKIPIF1<0,有SKIPIF1<0,即可證明SKIPIF1<0,即有SKIPIF1<0,進(jìn)而可得SKIPIF1<0,則有SKIPIF1<0,利用勾股定理可得SKIPIF1<0,則有SKIPIF1<0,問(wèn)題得解.【詳解】解:如圖,取點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,(當(dāng)B、P、T三點(diǎn)共線時(shí)取等號(hào))SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查阿氏圓問(wèn)題,相似三角形的判定和性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造相似三角形解決問(wèn)題.3.如圖所示,SKIPIF1<0,半徑為2的圓SKIPIF1<0內(nèi)切于SKIPIF1<0.SKIPIF1<0為圓SKIPIF1<0上一動(dòng)點(diǎn),過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0、SKIPIF1<0分別垂直于SKIPIF1<0的兩邊,垂足為SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【分析】根據(jù)題意,本題屬于動(dòng)點(diǎn)最值問(wèn)題-“阿氏圓”模型,首先作SKIPIF1<0于SKIPIF1<0,作SKIPIF1<0于SKIPIF1<0,如圖所示,通過(guò)代換,將SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,得到當(dāng)SKIPIF1<0與SKIPIF1<0相切時(shí),SKIPIF1<0取得最大值和最小值,分兩種情況,作出圖形,數(shù)形結(jié)合解直角三角形即可得到相應(yīng)最值,進(jìn)而得到取值范圍.【詳解】解:作SKIPIF1<0于SKIPIF1<0,作SKIPIF1<0于SKIPIF1<0,如圖所示:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0與SKIPIF1<0相切時(shí),SKIPIF1<0取得最大和最小,①連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,如圖1所示:可得:四邊形SKIPIF1<0是正方形,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;②連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,如圖2所示:可得:四邊形SKIPIF1<0是正方形,SKIPIF1<0,由上同理可知:在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查動(dòng)點(diǎn)最值模型-“阿氏圓”,難度較大,掌握解決動(dòng)點(diǎn)最值問(wèn)題的方法,熟記相關(guān)幾何知識(shí),尤其是圓的相關(guān)知識(shí)是解決問(wèn)題的關(guān)鍵.4.如圖,在SKIPIF1<0中,點(diǎn)A、點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0是劣弧SKIPIF1<0上的動(dòng)點(diǎn),則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【分析】延長(zhǎng)SKIPIF1<0到SKIPIF1<0,使得SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,利用相似三角形的性質(zhì)證明SKIPIF1<0,求SKIPIF1<0的最小值問(wèn)題轉(zhuǎn)化為求SKIPIF1<0的最小值.求出SKIPIF1<0即可判斷.【詳解】解:延長(zhǎng)SKIPIF1<0到SKIPIF1<0,使得SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造相似三角形解決問(wèn)題.5.如圖,邊長(zhǎng)為4的正方形,內(nèi)切圓記為⊙O,P是⊙O上一動(dòng)點(diǎn),則SKIPIF1<0PA+PB的最小值為.【答案】SKIPIF1<0【分析】SKIPIF1<0PA+PB=SKIPIF1<0(PA+SKIPIF1<0PB),利用相似三角形構(gòu)造SKIPIF1<0PB即可解答.【詳解】解:設(shè)⊙O半徑為r,OP=r=SKIPIF1<0BC=2,OB=SKIPIF1<0r=2SKIPIF1<0,取OB的中點(diǎn)I,連接PI,∴OI=IB=SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∠O是公共角,∴△BOP∽△POI,∴SKIPIF1<0,∴PI=SKIPIF1<0PB,∴AP+SKIPIF1<0PB=AP+PI,∴當(dāng)A、P、I在一條直線上時(shí),AP+SKIPIF1<0PB最小,作IE⊥AB于E,∵∠ABO=45°,∴IE=BE=SKIPIF1<0BI=1,∴AE=AB?BE=3,∴AI=SKIPIF1<0,∴AP+SKIPIF1<0PB最小值=AI=SKIPIF1<0,∵SKIPIF1<0PA+PB=SKIPIF1<0(PA+SKIPIF1<0PB),∴SKIPIF1<0PA+PB的最小值是SKIPIF1<0AI=SKIPIF1<0.故答案是SKIPIF1<0.【點(diǎn)睛】本題是“阿氏圓”問(wèn)題,解決問(wèn)題的關(guān)鍵是構(gòu)造相似三角形.6.如圖,已知正方ABCD的邊長(zhǎng)為6,圓B的半徑為3,點(diǎn)P是圓B上的一個(gè)動(dòng)點(diǎn),則SKIPIF1<0的最大值為.【答案】SKIPIF1<0【分析】如圖,連接SKIPIF1<0,在SKIPIF1<0上取一點(diǎn)SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0SKIPIF1<0,進(jìn)而證明SKIPIF1<0,則在點(diǎn)P運(yùn)動(dòng)的任意時(shí)刻,均有PM=SKIPIF1<0,從而將問(wèn)題轉(zhuǎn)化為求PD-PM的最大值.連接PD,在△PDM中,PD-PM<DM,故當(dāng)D、M、P共線時(shí),PD-PM=DM為最大值,勾股定理即可求得SKIPIF1<0.【詳解】如圖,連接SKIPIF1<0,在SKIPIF1<0上取一點(diǎn)SKIPIF1<0,使得SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0在△PDM中,PD-PM<DM,當(dāng)D、M、P共線時(shí),PD-PM=DM為最大值,SKIPIF1<0四邊形SKIPIF1<0是正方形SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查了圓的性質(zhì),相似三角形的性質(zhì)與判定,勾股定理,構(gòu)造SKIPIF1<0是解題的關(guān)鍵.7.如圖,在邊長(zhǎng)為4的正方形ABCD內(nèi)有一動(dòng)點(diǎn)P,且BP=SKIPIF1<0.連接CP,將線段PC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PQ.連接CQ、DQ,則SKIPIF1<0DQ+CQ的最小值為.【答案】5【分析】連接AC、AQ,先證明△BCP∽△ACQ得SKIPIF1<0即AQ=2,在AD上取AE=1,證明△QAE∽△DAQ得EQ=SKIPIF1<0QD,故SKIPIF1<0DQ+CQ=EQ+CQ≥CE,求出CE即可.【詳解】解:如圖,連接AC、AQ,∵四邊形ABCD是正方形,PC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PQ,∴∠ACB=∠PCQ=45°,∴∠BCP=∠ACQ,cos∠ACB=SKIPIF1<0,cos∠PCQ=SKIPIF1<0,∴∠ACB=∠PCO,∴△BCP∽△ACQ,∴SKIPIF1<0∵BP=SKIPIF1<0,∴AQ=2,∴Q在以A為圓心,AQ為半徑的圓上,在AD上取AE=1,∵SKIPIF1<0,SKIPIF1<0,∠QAE=∠DAQ,∴△QAE∽△DAQ,∴SKIPIF1<0即EQ=SKIPIF1<0QD,∴SKIPIF1<0DQ+CQ=EQ+CQ≥CE,連接CE,∴SKIPIF1<0,∴SKIPIF1<0DQ+CQ的最小值為5.故答案為:5.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),相似三角形的性質(zhì)與判定,三角函數(shù),解題的關(guān)鍵在于能夠連接AC、AQ,證明兩對(duì)相似三角形求解.8.如圖,在SKIPIF1<0中,SKIPIF1<0,以點(diǎn)B為圓心作圓B與SKIPIF1<0相切,點(diǎn)P為圓B上任一動(dòng)點(diǎn),則SKIPIF1<0的最小值是.【答案】SKIPIF1<0【分析】作BH⊥AC于H,取BC的中點(diǎn)D,連接PD,如圖,根據(jù)切線的性質(zhì)得BH為⊙B的半徑,再根據(jù)等腰直角三角形的性質(zhì)得到BHSKIPIF1<0ACSKIPIF1<0,接著證明△BPD∽△BCP得到PDSKIPIF1<0PC,所以PASKIPIF1<0PC=PA+PD,而PA+PD≥AD(當(dāng)且僅當(dāng)A、P、D共線時(shí)取等號(hào)),從而計(jì)算出AD得到PASKIPIF1<0的最小值.【詳解】解:作BH⊥AC于H,取BC的中點(diǎn)D,連接PD,如圖,∵AC為切線,∴BH為⊙B的半徑,∵∠ABC=90°,AB=CB=2,∴ACSKIPIF1<0BA=2SKIPIF1<0,∴BHSKIPIF1<0ACSKIPIF1<0,∴BPSKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,而∠PBD=∠CBP,∴△BPD∽△BCP,∴SKIPIF1<0,∴PDSKIPIF1<0PC,∴PASKIPIF1<0PC=PA+PD,而PA+PD≥AD(當(dāng)且僅當(dāng)A、P、D共線時(shí)取等號(hào)),而ADSKIPIF1<0,∴PA+PD的最小值為SKIPIF1<0,即PASKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.解決問(wèn)題的關(guān)鍵是利用相似比確定線段PDSKIPIF1<0PC.也考查了等腰直角三角形的性質(zhì).9.如圖,在RtSKIPIF1<0中,AB=AC=4,點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn),點(diǎn)P是扇形AEF的SKIPIF1<0上任意一點(diǎn),連接BP,CP,則SKIPIF1<0BP+CP的最小值是.【答案】SKIPIF1<0.【分析】在AB上取一點(diǎn)T,使得AT=1,連接PT,PA,CT.證明SKIPIF1<0,推出SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,推出PT=SKIPIF1<0PB,推出SKIPIF1<0PB+CP=CP+PT,根據(jù)PC+PT≥TC,求出CT即可解決問(wèn)題.【詳解】解:在AB上取一點(diǎn)T,使得AT=1,連接PT,PA,CT.∵PA=2.AT=1,AB=4,∴PA2=SKIPIF1<0AT?AB,∴SKIPIF1<0=SKIPIF1<0,∵∠PAT=∠PAB,∴SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴PT=SKIPIF1<0PB,∴SKIPIF1<0PB+CP=CP+PT,∵PC+PT≥TC,在RtSKIPIF1<0中,∵∠CAT=90°,AT=1,AC=4,∴CT=SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0PB+PC≥SKIPIF1<0,∴SKIPIF1<0PB+PC的最小值為SKIPIF1<0.故答案為SKIPIF1<0.【點(diǎn)睛】本題考查等腰直角三角形的性質(zhì),三角形相似的判定與性質(zhì),勾股定理的應(yīng)用,三角形的三邊關(guān)系,圓的基本性質(zhì),掌握以上知識(shí)是解題的關(guān)鍵.10.如圖,在△ABC中,∠ACB=90°,BC=12,AC=9,以點(diǎn)C為圓心,6為半徑的圓上有一個(gè)動(dòng)點(diǎn)D.連接AD、BD、CD,則2AD+3BD的最小值是.
【答案】SKIPIF1<0【分析】如下圖,在CA上取一點(diǎn)E,使得CE=4,先證△DCE∽△ACD,將SKIPIF1<0轉(zhuǎn)化為DE,從而求得SKIPIF1<0的最小距離,進(jìn)而得出2AD+3BD的最小值.【詳解】如下圖,在CA上取一點(diǎn)E,使得CE=4
∵AC=9,CD=6,CE=4∴SKIPIF1<0∵∠ECD=∠ACD∴△DCE∽△ACD∴SKIPIF1<0∴ED=SKIPIF1<0在△EDB中,ED+DB≥EB∴ED+DB最小為EB,即ED+DB=EB∴SKIPIF1<0在Rt△ECB中,EB=SKIPIF1<0∴SKIPIF1<0∴2AD+3DB=SKIPIF1<0故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查求最值問(wèn)題,解題關(guān)鍵是構(gòu)造出△DCE∽△ACD.11.如圖,已知正方形ABCD的邊長(zhǎng)為4,⊙B的半徑為2,點(diǎn)P是⊙B上的一個(gè)動(dòng)點(diǎn),則PD﹣SKIPIF1<0PC的最大值為.【答案】5【詳解】分析:由PD?SKIPIF1<0PC=PD?PG≤DG,當(dāng)點(diǎn)P在DG的延長(zhǎng)線上時(shí),PD?SKIPIF1<0PC的值最大,最大值為DG=5.詳解:在BC上取一點(diǎn)G,使得BG=1,如圖,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴SKIPIF1<0,∴PG=SKIPIF1<0PC,當(dāng)點(diǎn)P在DG的延長(zhǎng)線上時(shí),PD?SKIPIF1<0PC的值最大,最大值為DG=SKIPIF1<0=5.故答案為5點(diǎn)睛:本題考查圓綜合題、正方形的性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)構(gòu)建相似三角形解決問(wèn)題,學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,把問(wèn)題轉(zhuǎn)化為兩點(diǎn)之間線段最短解決,題目比較難,屬于中考?jí)狠S題.二、解答題12.已知SKIPIF1<0與SKIPIF1<0有公共頂點(diǎn)C,SKIPIF1<0為等邊三角形,在SKIPIF1<0中,SKIPIF1<0.(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),連接AD,已知四邊形ABDC的面積為SKIPIF1<0,求SKIPIF1<0的值;(2)如圖2,SKIPIF1<0,A、E、D三點(diǎn)共線,連接SKIPIF1<0、SKIPIF1<0,取SKIPIF1<0中點(diǎn)M,連接SKIPIF1<0,求證:SKIPIF1<0;(3)如圖3,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0以C為旋轉(zhuǎn)中心旋轉(zhuǎn),取SKIPIF1<0中點(diǎn)F,當(dāng)SKIPIF1<0的值最小時(shí),求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)見(jiàn)解析(3)SKIPIF1<0【分析】(1)延長(zhǎng)SKIPIF1<0到T,使得SKIPIF1<0連接SKIPIF1<0,過(guò)點(diǎn)D做SKIPIF1<0于N,證明SKIPIF1<0,得出SKIPIF1<0,SKIPIF1<0,證明SKIPIF1<0為等邊三角形,設(shè)SKIPIF1<0,得出SKIPIF1<0,求出x的值即可得出答案;(2)延長(zhǎng)SKIPIF1<0到SKIPIF1<0使得SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,證明SKIPIF1<0,得出SKIPIF1<0,證明SKIPIF1<0為SKIPIF1<0的中位線,得出SKIPIF1<0,即可證明結(jié)論;(3)連接SKIPIF1<0,過(guò)點(diǎn)A作SKIPIF1<0于點(diǎn)G,以點(diǎn)C為圓心,SKIPIF1<0為半徑作圓,在SKIPIF1<0上截取SKIPIF1<0,連接SKIPIF1<0,證明SKIPIF1<0,得出SKIPIF1<0,即SKIPIF1<0,得出SKIPIF1<0,連接SKIPIF1<0與SKIPIF1<0交于一點(diǎn),當(dāng)點(diǎn)F在此點(diǎn)時(shí),SKIPIF1<0最小,即SKIPIF1<0最小,過(guò)點(diǎn)M作SKIPIF1<0于點(diǎn)N,過(guò)點(diǎn)A作SKIPIF1<0于點(diǎn)Q,求出SKIPIF1<0,SKIPIF1<0即可得出答案.【詳解】(1)解:延長(zhǎng)SKIPIF1<0到T,使得SKIPIF1<0連接SKIPIF1<0,過(guò)點(diǎn)D做SKIPIF1<0于N,如圖所示:∵SKIPIF1<0為等邊三角形,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,四邊形SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0為等邊三角形,∵四邊形ABDC的面積為SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,(2)證明:延長(zhǎng)SKIPIF1<0到SKIPIF1<0使得SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,如圖所示:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0為等邊三角形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0為等邊三角形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵A為SKIPIF1<0中點(diǎn),M為SKIPIF1<0中點(diǎn),∴SKIPIF1<0為SKIPIF1<0的中位線,∴SKIPIF1<0,∴SKIPIF1<0;(3)解:如圖,連接SKIPIF1<0,過(guò)點(diǎn)A作SKIPIF1<0于點(diǎn)G,以點(diǎn)C為圓心,SKIPIF1<0為半徑作圓,在SKIPIF1<0上截取SKIPIF1<0,連接SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵點(diǎn)F為等邊三角形SKIPIF1<0的邊SKIPIF1<0中點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0的長(zhǎng)度為定值,∴在SKIPIF1<0旋轉(zhuǎn)時(shí),點(diǎn)F在以C為圓心,SKIPIF1<0為半徑的圓上運(yùn)動(dòng),∴如圖,連接SKIPIF1<0與SKIPIF1<0交于一點(diǎn),當(dāng)點(diǎn)F在此點(diǎn)時(shí),SKIPIF1<0最小,即SKIPIF1<0最小,過(guò)點(diǎn)M作SKIPIF1<0于點(diǎn)N,過(guò)點(diǎn)A作SKIPIF1<0于點(diǎn)Q,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【點(diǎn)睛】本題主要考查了等邊三角形的判定和性質(zhì),三角形全等的判定和性質(zhì),三角形相似的判定和性質(zhì),特殊角的三角函數(shù),求正切值,勾股定理,直角三角形的性質(zhì),解題的關(guān)鍵是作出輔助線,找出SKIPIF1<0取最小值時(shí),點(diǎn)F的位置.13.如圖1,拋物線SKIPIF1<0與SKIPIF1<0軸交于SKIPIF1<0兩點(diǎn),與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,其中點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,拋物線的對(duì)稱(chēng)軸是直線SKIPIF1<0.(1)求拋物線的解析式;(2)若點(diǎn)SKIPIF1<0是直線SKIPIF1<0下方的拋物線上一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)SKIPIF1<0使四邊形SKIPIF1<0的面積為16,若存在,求出點(diǎn)SKIPIF1<0的坐標(biāo)若不存在,請(qǐng)說(shuō)明理由;(3)如圖2,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交拋物線的對(duì)稱(chēng)軸于點(diǎn)SKIPIF1<0,以點(diǎn)SKIPIF1<0為圓心,2為半徑作SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0(3)SKIPIF1<0【分析】(1)根據(jù)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,拋物線的對(duì)稱(chēng)軸是直線SKIPIF1<0.待定系數(shù)法求二次函數(shù)解析式即可,(2)先求得直線SKIPIF1<0解析式,設(shè)SKIPIF1<0,則SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0軸交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,根據(jù)SKIPIF1<0等于16建立方程,解一元二次方程即可求得SKIPIF1<0的值,然后求得SKIPIF1<0的坐標(biāo),(3)在SKIPIF1<0上取SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,構(gòu)造SKIPIF1<0,則當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),取得最小值,最小值為SKIPIF1<0,勾股定理解直角三形即可.【詳解】(1)解:∵拋物線SKIPIF1<0與SKIPIF1<0軸交于SKIPIF1<0兩點(diǎn),與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,拋物線的對(duì)稱(chēng)軸是直線SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0拋物線解析式為:SKIPIF1<0,(2)當(dāng)SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0解析式為SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0解析式為SKIPIF1<0,設(shè)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0軸交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0的面積為16,SKIPIF1<0SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,(3)如圖,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交拋物線的對(duì)稱(chēng)軸于點(diǎn)SKIPIF1<0,以點(diǎn)SKIPIF1<0為圓心,2為半徑作SKIPIF1<0,SKIPIF1<0是拋物線的對(duì)稱(chēng)軸,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0上取SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,交拋物線對(duì)稱(chēng)軸于點(diǎn)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),取得最小值,最小值為SKIPIF1<0,SKIPIF1<0SKIPIF1<0.則SKIPIF1<0的最小值為SKIPIF1<0.【點(diǎn)睛】本題考查了二次函數(shù)綜合,相似三角形的性質(zhì)與判定,掌握二次函數(shù)的性質(zhì)與相似三角形的性質(zhì)與判定是解題的關(guān)鍵.14.如圖1,拋物線SKIPIF1<0與x軸交于點(diǎn)SKIPIF1<0,與y軸交于點(diǎn)B,在x軸上有一動(dòng)點(diǎn)SKIPIF1<0(SKIPIF1<0),過(guò)點(diǎn)E作x軸的垂線交直線AB于點(diǎn)N,交拋物線于點(diǎn)P,過(guò)點(diǎn)P作PM⊥AB于點(diǎn)M.(1)求a的值和直線AB的函數(shù)表達(dá)式:(2)設(shè)△PMN的周長(zhǎng)為SKIPIF1<0,△AEN的周長(zhǎng)為SKIPIF1<0,若SKIPIF1<0求m的值.(3)如圖2,在(2)的條件下,將線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到SKIPIF1<0,旋轉(zhuǎn)角為SKIPIF1<0(SKIPIF1<0),連接SKIPIF1<0、SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(1)a=-SKIPIF1<0.直線AB解析式為y=-SKIPIF1<0x+3;(2)2(3)SKIPIF1<0【分析】(1)令y=0,求出拋物線與x軸交點(diǎn),列出方程即可求出a,根據(jù)待定系數(shù)法可以確定直線AB解析式;(2)由△PNM∽△ANE,推出SKIPIF1<0,列出方程即可解決問(wèn)題;(3)在y軸上取一點(diǎn)M使得OM′=SKIPIF1<0,構(gòu)造相似三角形,可以證明AM′就是E′A+SKIPIF1<0E′B的最小值.【詳解】(1)令y=0,則ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=-1或-SKIPIF1<0,∵拋物線y=ax2+(a+3)x+3(a≠0)與x軸交于點(diǎn)A(4,0),∴-SKIPIF1<0=4,∴a=-SKIPIF1<0.∵A(4,0),B(0,3),設(shè)直線AB解析式為y=kx+b,則SKIPIF1<0,解得SKIPIF1<0,∴直線AB解析式為y=-SKIPIF1<0x+3;(2)如圖1,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∵SKIPIF1<0∴SKIPIF1<0,∵NE∥OB,∴SKIPIF1<0,∴SKIPIF1<0,∵拋物線解析式為SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,解得m=2或4,經(jīng)檢驗(yàn)x=4是分式方程的增根,∴m=2;(3)如圖2,在y軸上取一點(diǎn)M′使得OM′=SKIPIF1<0,連接AM′,在AM′上取一點(diǎn)E′使得OE′=OE.∵OE′=2,OM′?OB=SKIPIF1<0,∴OE′2=OM′?OB,∴SKIPIF1<0,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,此時(shí)SKIPIF1<0最?。▋牲c(diǎn)間線段最短,A、M′、E′共線時(shí)),最小值SKIPIF1<0.【點(diǎn)睛】本題為二次函數(shù)綜合題,主要考查相似三角形的判定和性質(zhì)、待定系數(shù)法、最小值問(wèn)題等知識(shí),解題的關(guān)鍵是構(gòu)造相似三角形,找到線段AM′就是SKIPIF1<0的最小值.15.如圖,Rt△ABC,∠ACB=90°,AC=BC=2,以C為頂點(diǎn)的正方形CDEF(C、D、E、F四個(gè)頂點(diǎn)按逆時(shí)針?lè)较蚺帕校┛梢岳@點(diǎn)C自由轉(zhuǎn)動(dòng),且CD=SKIPIF1<0,連接AF,BD(1)求證:△BDC≌△AFC(2)當(dāng)正方形CDEF有頂點(diǎn)在線段AB上時(shí),直接寫(xiě)出BD+SKIPIF1<0AD的值;(3)直接寫(xiě)出正方形CDEF旋轉(zhuǎn)過(guò)程中,BD+SKIPIF1<0AD的最小值.【答案】(1)見(jiàn)解析;(2)SKIPIF1<0或SKIPIF1<0;(3)SKIPIF1<0【分析】(1)利用SAS,即可證明△FCA≌△DCB;(2)分兩種情況當(dāng)點(diǎn)D,E在AB邊上時(shí)和當(dāng)點(diǎn)E,F(xiàn)在邊AB上時(shí),討論即可求解;(3)取AC的中點(diǎn)M.連接DM,BM.則CM=1,可證得△DCM∽△ACD,可得DM=SKIPIF1<0AD,從而得到當(dāng)B,D,M共線時(shí),BD+SKIPIF1<0AD的值最小,即可求解.【詳解】(1)證明:∵四邊形CDEF是正方形,∴CF=CD,∠DCF=∠ACB=90°,∴∠ACF=∠DCB,∵AC=CB,∴△FCA≌△DCB(SAS);(2)解:①如圖2中,當(dāng)點(diǎn)D,E在AB邊上時(shí),∵AC=BC=2,∠ACB=90°,∴SKIPIF1<0,∵CD⊥AB,∴AD=BD=SKIPIF1<0,∴BD+SKIPIF1<0AD=SKIPIF1<0;②如圖3中,當(dāng)點(diǎn)E,F(xiàn)在邊AB上時(shí).BD=CF=SKIPIF1<0SKIPIF1<0,AD=SKIPIF1<0=SKIPIF1<0,∴BD+SKIPIF1<0AD=SKIPIF1<0,綜上所述,BD+SKIPIF1<0AD的值SKIPIF1<0或SKIPIF1<0;(3)如圖4中.取AC的中點(diǎn)M.連接DM,BM.則CM=1,∵CD=SKIPIF1<0,CM=1,CA=2,∴CD2=CM?CA,∴SKIPIF1<0=SKIPIF1<0,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴DM=SKIPIF1<0AD,∴BD+SKIPIF1<0AD=BD+DM,∴當(dāng)B,D,M共線時(shí),BD+SKIPIF1<0AD的值最小,最小值SKIPIF1<0.【點(diǎn)睛】本題主要考查了相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),銳角三角函數(shù),熟練掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.16.如圖1,在平面直角坐標(biāo)系中,直線y=﹣5x+5與x軸,y軸分別交于A,C兩點(diǎn),拋物線y=x2+bx+c經(jīng)過(guò)A,C兩點(diǎn),與x軸的另一交點(diǎn)為B(1)求拋物線解析式及B點(diǎn)坐標(biāo);(2)若點(diǎn)M為x軸下方拋物線上一動(dòng)點(diǎn),連接MA、MB、BC,當(dāng)點(diǎn)M運(yùn)動(dòng)到某一位置時(shí),四邊形AMBC面積最大,求此時(shí)點(diǎn)M的坐標(biāo)及四邊形AMBC的面積;(3)如圖2,若P點(diǎn)是半徑為2的⊙B上一動(dòng)點(diǎn),連接PC、PA,當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),PC+SKIPIF1<0PA的值最小,請(qǐng)求出這個(gè)最小值,并說(shuō)明理由.【答案】(1)y=x2﹣6x+5,B(5,0);(2)當(dāng)M(3,﹣4)時(shí),四邊形AMBC面積最大,最大面積等于18;(3)PC+SKIPIF1<0PA的最小值為SKIPIF1<0,理由詳見(jiàn)解析.【分析】(1)由直線y=﹣5x+5求點(diǎn)A、C坐標(biāo),用待定系數(shù)法求拋物線解析式,進(jìn)而求得點(diǎn)B坐標(biāo).(2)從x軸把四邊形AMBC分成△ABC與△ABM;由點(diǎn)A、B、C坐標(biāo)求△ABC面積;設(shè)點(diǎn)M橫坐標(biāo)為m,過(guò)點(diǎn)M作x軸的垂線段MH,則能用m表示MH的長(zhǎng),進(jìn)而求△ABM的面積,得到△ABM面積與m的二次函數(shù)關(guān)系式,且對(duì)應(yīng)的a值小于0,配方即求得m為何值時(shí)取得最大值,進(jìn)而求點(diǎn)M坐標(biāo)和四邊形AMBC的面積最大值.(3)作點(diǎn)D坐標(biāo)為(4,0),可得BD=1,進(jìn)而有SKIPIF1<0,再加上公共角∠PBD=∠ABP,根據(jù)兩邊對(duì)應(yīng)成比例且?jiàn)A角相等可證△PBD∽△ABP,得SKIPIF1<0等于相似比SKIPIF1<0,進(jìn)而得PD=SKIPIF1<0AP,所以當(dāng)C、P、D在同一直線上時(shí),PC+SKIPIF1<0PA=PC+PD=CD最小.用兩點(diǎn)間距離公式即求得CD的長(zhǎng).【詳解】解:(1)直線y=﹣5x+5,x=0時(shí),y=5∴C(0,5)y=﹣5x+5=0時(shí),解得:x=1∴A(1,0)∵拋物線y=x2+bx+c經(jīng)過(guò)A,C兩點(diǎn)∴SKIPIF1<0
解得:SKIPIF1<0∴拋物線解析式為y=x2﹣6x+5當(dāng)y=x2﹣6x+5=0時(shí),解得:x1=1,x2=5∴B(5,0)(2)如圖1,過(guò)點(diǎn)M作MH⊥x軸于點(diǎn)H∵A(1,0),B(5,0),C(0,5)∴AB=5﹣1=4,OC=5∴S△ABC=SKIPIF1<0AB?OC=SKIPIF1<0×4×5=10∵點(diǎn)M為x軸下方拋物線上的點(diǎn)∴設(shè)M(m,m2﹣6m+5)(1<m<5)∴MH=|m2﹣6m+5|=﹣m2+6m﹣5∴S△ABM=SKIPIF1<0AB?MH=SKIPIF1<0×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8∴S四邊形AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18∴當(dāng)m=3,即M(3,﹣4)時(shí),四邊形AMBC面積最大,最大面積等于18(3)如圖2,在x軸上取點(diǎn)D(4,0),連接PD、CD∴BD=5﹣4=1∵AB=4,BP=2∴SKIPIF1<0∵∠PBD=∠ABP∴△PBD∽△ABP∴SKIPIF1<0∴PD=SKIP
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高??萍汲晒D(zhuǎn)移轉(zhuǎn)化的面臨的主要問(wèn)題
- 拔尖創(chuàng)新人才培養(yǎng)的師資隊(duì)伍建設(shè)策略
- 包鋼廢鋼合同范本
- 科技賦能下的現(xiàn)代農(nóng)業(yè)教育體系構(gòu)建
- 未來(lái)教育趨勢(shì)項(xiàng)目式學(xué)習(xí)與思政教育的深度融合
- 臨滄云南臨滄市鎮(zhèn)康縣司法局招聘司法協(xié)理員筆試歷年參考題庫(kù)附帶答案詳解
- 國(guó)企蔬菜采購(gòu)合同范本
- PIN1-inhibitor-5-生命科學(xué)試劑-MCE
- MDBP-hydrochloride-生命科學(xué)試劑-MCE
- 綜治宣傳合同范本
- 七年級(jí)下冊(cè)《平行線的判定》課件與練習(xí)
- 2025年中考英語(yǔ)時(shí)文閱讀 6篇有關(guān)電影哪吒2和 DeepSeek的英語(yǔ)閱讀(含答案)
- 修高速土方合同范例
- 2024年湖北省武漢市中考語(yǔ)文試卷
- 二零二五年度高品質(zhì)小區(qū)瀝青路面翻新施工與道路綠化合同2篇
- 2024年形勢(shì)與政策復(fù)習(xí)題庫(kù)含答案(綜合題)
- 2022年北京市初三一模語(yǔ)文試題匯編:基礎(chǔ)知識(shí)綜合
- 2025年廣東食品藥品職業(yè)學(xué)院高職單招高職單招英語(yǔ)2016-2024年參考題庫(kù)含答案解析
- 2 爆破工試題及答案
- 電路基礎(chǔ)知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋江西職業(yè)技術(shù)大學(xué)
- DCMM數(shù)據(jù)管理師練習(xí)測(cè)試卷
評(píng)論
0/150
提交評(píng)論