![山東省濟(jì)南市山東師范大學(xué)附中2023-2024學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view11/M01/0F/30/wKhkGWXo-OeACFQQAAJjzztpCTo937.jpg)
![山東省濟(jì)南市山東師范大學(xué)附中2023-2024學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view11/M01/0F/30/wKhkGWXo-OeACFQQAAJjzztpCTo9372.jpg)
![山東省濟(jì)南市山東師范大學(xué)附中2023-2024學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view11/M01/0F/30/wKhkGWXo-OeACFQQAAJjzztpCTo9373.jpg)
![山東省濟(jì)南市山東師范大學(xué)附中2023-2024學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view11/M01/0F/30/wKhkGWXo-OeACFQQAAJjzztpCTo9374.jpg)
![山東省濟(jì)南市山東師范大學(xué)附中2023-2024學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view11/M01/0F/30/wKhkGWXo-OeACFQQAAJjzztpCTo9375.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省濟(jì)南市山東師范大學(xué)附中2023-2024學(xué)年高三第二次診斷性檢測(cè)數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,集合,則等于()A. B.C. D.2.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.33.已知集合,若,則實(shí)數(shù)的取值范圍為()A. B. C. D.4.大衍數(shù)列,米源于我國(guó)古代文獻(xiàn)《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋我國(guó)傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項(xiàng),都代表太極衍生過(guò)程中,曾經(jīng)經(jīng)歷過(guò)的兩儀數(shù)量總和.已知該數(shù)列前10項(xiàng)是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項(xiàng)的通項(xiàng)公式為()A. B. C. D.5.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.6.已知,是雙曲線的兩個(gè)焦點(diǎn),過(guò)點(diǎn)且垂直于軸的直線與相交于,兩點(diǎn),若,則△的內(nèi)切圓的半徑為()A. B. C. D.7.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.8.如圖,平面與平面相交于,,,點(diǎn),點(diǎn),則下列敘述錯(cuò)誤的是()A.直線與異面B.過(guò)只有唯一平面與平行C.過(guò)點(diǎn)只能作唯一平面與垂直D.過(guò)一定能作一平面與垂直9.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.10.已知函數(shù),若方程恰有兩個(gè)不同實(shí)根,則正數(shù)m的取值范圍為()A. B.C. D.11.已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)是其一條漸近線上一點(diǎn),且以為直徑的圓經(jīng)過(guò)點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.12.已知正方體的棱長(zhǎng)為2,點(diǎn)為棱的中點(diǎn),則平面截該正方體的內(nèi)切球所得截面面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是公差不為0的等差數(shù)列的前n項(xiàng)和,且,則______.14.對(duì)任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_(kāi)________.15.某外商計(jì)劃在個(gè)候選城市中投資個(gè)不同的項(xiàng)目,且在同一個(gè)城市投資的項(xiàng)目不超過(guò)個(gè),則該外商不同的投資方案有____種.16.農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱(chēng)粽籺,俗稱(chēng)“粽子”,古稱(chēng)“角黍”,是端午節(jié)大家都會(huì)品嘗的食品,傳說(shuō)這是為了紀(jì)念戰(zhàn)國(guó)時(shí)期楚國(guó)大臣、愛(ài)國(guó)主義詩(shī)人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長(zhǎng)為1的正三角形構(gòu)成的,將它沿虛線折起來(lái),可以得到如圖所示粽子形狀的六面體,則該六面體的體積為_(kāi)___;若該六面體內(nèi)有一球,則該球體積的最大值為_(kāi)___.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知.(1)求不等式的解集;(2)記的最小值為,且正實(shí)數(shù)滿足.證明:.18.(12分)已知函數(shù),,(1)討論的單調(diào)性;(2)若在定義域內(nèi)有且僅有一個(gè)零點(diǎn),且此時(shí)恒成立,求實(shí)數(shù)m的取值范圍.19.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.20.(12分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.21.(12分)設(shè)數(shù)列,其前項(xiàng)和,又單調(diào)遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項(xiàng)公式;(Ⅱ)若,求數(shù)列的前n項(xiàng)和,并求證:.22.(10分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點(diǎn)睛】該題考查的是有關(guān)集合的運(yùn)算的問(wèn)題,涉及到的知識(shí)點(diǎn)有一元二次不等式的解法,集合的運(yùn)算,屬于基礎(chǔ)題目.2、B【解析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點(diǎn)睛】本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學(xué)生分析問(wèn)題的能力,難度較易.3、A【解析】
解一元二次不等式化簡(jiǎn)集合的表示,求解函數(shù)的定義域化簡(jiǎn)集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進(jìn)行求解即可.【詳解】,.因?yàn)?,所以有,因此?故選:A【點(diǎn)睛】本題考查了已知集合運(yùn)算的結(jié)果求參數(shù)取值范圍問(wèn)題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學(xué)運(yùn)算能力.4、B【解析】
直接代入檢驗(yàn),排除其中三個(gè)即可.【詳解】由題意,排除D,,排除A,C.同時(shí)B也滿足,,,故選:B.【點(diǎn)睛】本題考查由數(shù)列的項(xiàng)選擇通項(xiàng)公式,解題時(shí)可代入檢驗(yàn),利用排除法求解.5、C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個(gè)選項(xiàng)中雙曲線的漸近線方程,由此確定選項(xiàng).【詳解】?jī)蓷l漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時(shí)要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項(xiàng)漸近線為,B選項(xiàng)漸近線為,C選項(xiàng)漸近線為,D選項(xiàng)漸近線為.所以雙曲線的方程不可能為.故選:C【點(diǎn)睛】本小題主要考查雙曲線的漸近線方程,屬于基礎(chǔ)題.6、B【解析】
設(shè)左焦點(diǎn)的坐標(biāo),由AB的弦長(zhǎng)可得a的值,進(jìn)而可得雙曲線的方程,及左右焦點(diǎn)的坐標(biāo),進(jìn)而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個(gè)三角形的面積之和可得內(nèi)切圓的半徑.【詳解】由雙曲線的方程可設(shè)左焦點(diǎn),由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長(zhǎng)為設(shè)內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【點(diǎn)睛】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長(zhǎng)周長(zhǎng)的一半之積等于三角形的面積可得半徑的應(yīng)用,屬于中檔題.7、D【解析】
直接利用復(fù)數(shù)的模的求法的運(yùn)算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模的運(yùn)算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計(jì)算能力.8、D【解析】
根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對(duì)選項(xiàng)中的命題判斷.【詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過(guò)只有唯一平面與平行,故正確.C.根據(jù)過(guò)一點(diǎn)有且只有一個(gè)平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過(guò)不一定能作一平面與垂直,故錯(cuò)誤.故選:D【點(diǎn)睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.9、B【解析】
奇函數(shù)滿足定義域關(guān)于原點(diǎn)對(duì)稱(chēng)且,在上即可.【詳解】A:因?yàn)槎x域?yàn)?,所以不可能時(shí)奇函數(shù),錯(cuò)誤;B:定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且滿足奇函數(shù),,在上,因?yàn)?,所以在上不是增函?shù),錯(cuò)誤;D:定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且,滿足奇函數(shù),在上很明顯存在變號(hào)零點(diǎn),所以在上不是增函數(shù),錯(cuò)誤;故選:B【點(diǎn)睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點(diǎn)對(duì)稱(chēng),屬于簡(jiǎn)單題目.10、D【解析】
當(dāng)時(shí),函數(shù)周期為,畫(huà)出函數(shù)圖像,如圖所示,方程兩個(gè)不同實(shí)根,即函數(shù)和有圖像兩個(gè)交點(diǎn),計(jì)算,,根據(jù)圖像得到答案.【詳解】當(dāng)時(shí),,故函數(shù)周期為,畫(huà)出函數(shù)圖像,如圖所示:方程,即,即函數(shù)和有兩個(gè)交點(diǎn).,,故,,,,.根據(jù)圖像知:.故選:.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問(wèn)題,確定函數(shù)周期畫(huà)出函數(shù)圖像是解題的關(guān)鍵.11、B【解析】
根據(jù)題意,設(shè)點(diǎn)在第一象限,求出此坐標(biāo),再利用三角形的面積即可得到結(jié)論.【詳解】由題意,設(shè)點(diǎn)在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過(guò)點(diǎn),則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.12、A【解析】
根據(jù)球的特點(diǎn)可知截面是一個(gè)圓,根據(jù)等體積法計(jì)算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設(shè)內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因?yàn)閮?nèi)切球的半徑等于正方體棱長(zhǎng)的一半,所以球的半徑為,又因?yàn)椋?,又因?yàn)?,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點(diǎn)睛】本題考查正方體的內(nèi)切球的特點(diǎn)以及球的截面面積的計(jì)算,難度一般.任何一個(gè)平面去截球,得到的截面一定是圓面,截面圓的半徑可通過(guò)球的半徑以及球心到截面的距離去計(jì)算.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】
將已知已知轉(zhuǎn)化為的形式,化簡(jiǎn)后求得,利用等差數(shù)列前公式化簡(jiǎn),由此求得表達(dá)式的值.【詳解】因?yàn)?,所?故填:.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,考查等差數(shù)列的性質(zhì)以及求和,考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、【解析】
將代入求解即可;當(dāng)為奇數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進(jìn)而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時(shí),,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時(shí),,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類(lèi)討論思想和轉(zhuǎn)化思想.15、60【解析】試題分析:每個(gè)城市投資1個(gè)項(xiàng)目有種,有一個(gè)城市投資2個(gè)有種,投資方案共種.考點(diǎn):排列組合.16、【解析】
(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對(duì)稱(chēng)性得,小球的體積要達(dá)到最大,即球與六個(gè)面都相切時(shí),求出球的半徑,再代入球的體積公式可得答案.【詳解】(1)每個(gè)三角形面積是,由對(duì)稱(chēng)性可知該六面是由兩個(gè)正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對(duì)稱(chēng)性得,小球的體積要達(dá)到最大,即球與六個(gè)面都相切時(shí),由于圖像的對(duì)稱(chēng)性,內(nèi)部的小球要是體積最大,就是球要和六個(gè)面相切,連接球心和五個(gè)頂點(diǎn),把六面體分成了六個(gè)三棱錐設(shè)球的半徑為,所以,所以球的體積.故答案為:;.【點(diǎn)睛】本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計(jì)算,考查邏輯推理能力和空間想象能力求解球的體積關(guān)鍵是判斷在什么情況下,其體積達(dá)到最大,考查運(yùn)算求解能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或;(2)見(jiàn)解析【解析】
(1)根據(jù),利用零點(diǎn)分段法解不等式,或作出函數(shù)的圖像,利用函數(shù)的圖像解不等式;(2)由(1)作出的函數(shù)圖像求出的最小值為,可知,代入中,然后給等式兩邊同乘以,再將寫(xiě)成后,化簡(jiǎn)變形,再用均值不等式可證明.【詳解】(1)解法一:1°時(shí),,即,解得;2°時(shí),,即,解得;3°時(shí),,即,解得.綜上可得,不等式的解集為或.解法二:由作出圖象如下:由圖象可得不等式的解集為或.(2)由所以在上單調(diào)遞減,在上單調(diào)遞增,所以,正實(shí)數(shù)滿足,則,即,(當(dāng)且僅當(dāng)即時(shí)取等號(hào))故,得證.【點(diǎn)睛】此題考查了絕對(duì)值不等式的解法,絕對(duì)值不等式的性質(zhì)和均值不等式的運(yùn)用,考查了分類(lèi)討論思想和轉(zhuǎn)化思想,屬于中檔題.18、(1)時(shí),在上單調(diào)遞增,時(shí),在上遞減,在上遞增.(2).【解析】
(1)求出導(dǎo)函數(shù),分類(lèi)討論,由確定增區(qū)間,由確定減區(qū)間;(2)由,利用(1)首先得或,求出的最小值即可得結(jié)論.【詳解】(1)函數(shù)定義域是,,當(dāng)時(shí),,單調(diào)遞增;時(shí),令得,時(shí),,遞減,時(shí),,遞增,綜上所述,時(shí),在上單調(diào)遞增,時(shí),在上遞減,在上遞增.(2)易知,由函數(shù)單調(diào)性,若有唯一零點(diǎn),則或.當(dāng)時(shí),,,從而只需時(shí),恒成立,即,令,,在上遞減,在上遞增,∴,從而.時(shí),,,令,由,知在遞減,在上遞增,,∴.綜上所述,的取值范圍是.【點(diǎn)睛】本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)零點(diǎn)個(gè)數(shù)與不等式恒成立問(wèn)題,解題關(guān)鍵在于轉(zhuǎn)化,不等式恒成立問(wèn)題通常轉(zhuǎn)化為求函數(shù)的最值.這又可通過(guò)導(dǎo)數(shù)求解.19、(1)見(jiàn)解析;(2)【解析】
(1)根據(jù)面面垂直性質(zhì)及線面垂直性質(zhì),可證明;由所給線段關(guān)系,結(jié)合勾股定理逆定理,可證明,進(jìn)而由線面垂直的判定定理證明平面.(2)建立空間直角坐標(biāo)系,寫(xiě)出各個(gè)點(diǎn)的坐標(biāo),并求得平面和平面的法向量,由空間向量法求得兩個(gè)平面夾角的余弦值,結(jié)合圖形即可求得二面角的大小.【詳解】(1)證明:∵平面平面ABEG,且,∴平面,∴,由題意可得,∴,∵,且,∴平面.(2)如圖所示,建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的法向量是,則,令,,由(1)可知平面的法向量是,∴,由圖可知,二面角為鈍二面角,所以二面角的大小為.【點(diǎn)睛】本題考查了線面垂直的判定,面面垂直及線面垂直的性質(zhì)應(yīng)用,空間向量法求二面角的大小,屬于中檔題.20、(1);(2).【解析】
(1)分類(lèi)討論去絕對(duì)值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范圍,判斷,為正,去掉絕對(duì)值,轉(zhuǎn)化為在時(shí)恒成
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 全新員工入職合同下載
- 2025廣告發(fā)布委托合同書(shū)版范本
- 全新房地產(chǎn)買(mǎi)賣(mài)合同范文下載
- 公司業(yè)務(wù)擔(dān)保合同
- 單位貨物采購(gòu)合同格式
- 幼兒園股份合伙經(jīng)營(yíng)合作合同書(shū)
- 2024年中考物理(安徽卷)真題詳細(xì)解讀及評(píng)析
- 地板磚購(gòu)銷(xiāo)合同模板
- 拓寬知識(shí)面的重要性主題班會(huì)
- 2025如果合同標(biāo)的不合格怎么辦反擔(dān)保
- 商標(biāo)法基礎(chǔ)知識(shí)
- 2025年高考物理一輪復(fù)習(xí)之機(jī)械振動(dòng)
- 2024年度市政工程項(xiàng)目三方合作協(xié)議3篇
- (2024)甘肅省公務(wù)員考試《行測(cè)》真題及答案解析
- 醫(yī)院醫(yī)務(wù)人員醫(yī)德考評(píng)標(biāo)準(zhǔn)
- 小紅書(shū)種草營(yíng)銷(xiāo)師(初級(jí))認(rèn)證考試真題試題庫(kù)(含答案)
- 癲癇病人的護(hù)理(課件)
- 2024年WPS計(jì)算機(jī)二級(jí)考試題庫(kù)350題(含答案)
- 2024年6月浙江省高考地理試卷真題(含答案逐題解析)
- 醫(yī)院培訓(xùn)課件:《如何撰寫(xiě)護(hù)理科研標(biāo)書(shū)》
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試 數(shù)學(xué) 含答案
評(píng)論
0/150
提交評(píng)論