版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東德州市2024屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.設(shè),,則()A.且 B.且C.且 D.且2.已知函數(shù)有唯一零點,則()A. B.C. D.13.設(shè)集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},則圖中陰影部分表示的集合的真子集有()個A.3 B.4C.7 D.84.已知函數(shù)的圖象經(jīng)過點,則的值為()A. B.C. D.5.已知向量,且,則A. B.C.2 D.-26.命題“任意實數(shù)”的否定是()A.任意實數(shù) B.存在實數(shù)C.任意實數(shù) D.存實數(shù)7.“”是“”的條件A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件8.已知函數(shù),則是A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)9.關(guān)于的不等式恰有2個整數(shù)解,則實數(shù)的取值范圍是()A. B.C. D.10.現(xiàn)在人們的環(huán)保意識越來越強,對綠色建筑材料的需求也越來越高.某甲醛檢測機構(gòu)對某種綠色建筑材料進行檢測,一定量的該種材料在密閉的檢測房間內(nèi)釋放的甲醛濃度(單位:)隨室溫(單位:℃)變化的函數(shù)關(guān)系式為(為常數(shù)).若室溫為20℃時該房間的甲醛濃度為,則室溫為30℃時該房間的甲醛濃度約為(?。ǎ〢. B.C. D.11.若函數(shù)在上是增函數(shù),則實數(shù)k的取值范圍是()A. B.C. D.12.投壺是從先秦延續(xù)至清末的漢民族傳統(tǒng)禮儀和宴飲游戲,在春秋戰(zhàn)國時期較為盛行.如圖為一幅唐朝的投壺圖,假設(shè)甲、乙、丙是唐朝的三位投壺游戲參與者,且甲、乙、丙每次投壺時,投中與不投中是等可能的.若甲、乙、丙各投壺1次,則這3人中至多有1人投中的概率為()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,,則當(dāng)時____14.函數(shù)的值域是__________.15.已知冪函數(shù)過點,若,則________16.已知函數(shù)的圖象恒過定點A,若點A在一次函數(shù)的圖象上,其中,則的最小值為_____________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知定義在上的函數(shù)是奇函數(shù)(1)求函數(shù)的解析式;(2)判斷的單調(diào)性,并用單調(diào)性定義證明18.已知函數(shù)(且)的圖象過點.(1)求函數(shù)的解析式;(2)解不等式.19.解答題(1);(2)lg20+log1002520.已知(1)求的值(2)求的值.(結(jié)果保留根號)21.在三棱錐中,,,O是線段AC的中點,M是線段BC的中點.(1)求證:PO⊥平面ABC;(2)求直線PM與平面PBO所成的角的正弦值.22.已知定義域為的函數(shù)是奇函數(shù).(1)求實數(shù)的值;(2)判斷并用定義證明該函數(shù)在定義域上的單調(diào)性;(3)若方程在內(nèi)有解,求實數(shù)的取值范圍
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、B【解析】容易得出,,即得出,,從而得出,【詳解】,.又,即,,,故選B.【點睛】本題考查對數(shù)函數(shù)單調(diào)性的應(yīng)用,求解時注意總結(jié)規(guī)律,即對數(shù)的底數(shù)和真數(shù)同時大于1或同時大于0小于1,函數(shù)值大于0;若一個大于1,另一個大于0小于1,函數(shù)值小于02、B【解析】令,轉(zhuǎn)化為有唯一零點,根據(jù)偶函數(shù)的對稱性求解.【詳解】因為函數(shù),令,則為偶函數(shù),因為函數(shù)有唯一零點,所以有唯一零點,根據(jù)偶函數(shù)對稱性,則,解得,故選:B3、C【解析】先求出A∩B={3,5},再求出圖中陰影部分表示的集合為:CU(A∩B)={1,2,4},由此能求出圖中陰影部分表示的集合的真子集的個數(shù)【詳解】∵集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∴A∩B={3,5},圖中陰影部分表示的集合為:CU(A∩B)={1,2,4},∴圖中陰影部分表示的集合的真子集有:23–1=8–1=7.故選C【點睛】本題考查集合的真子集的個數(shù)的求法,考查交集定義、補集、維恩圖等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題4、C【解析】將點的坐標(biāo)代入函數(shù)解析式,求出的值即可.【詳解】因為函數(shù)的圖象經(jīng)過點,所以,則.故選:C.5、A【解析】由于兩個向量垂直,故有.故選:A6、B【解析】根據(jù)含全稱量詞的命題的否定求解.【詳解】根據(jù)含量詞命題的否定,命題“任意實數(shù)”的否定是存在實數(shù),故選:B7、A【解析】若,則;若,則,推不出.所以“”是“”成立的充分不必要條件.故選A考點:充分必要條件8、B【解析】先求得,再根據(jù)余弦函數(shù)的周期性、奇偶性,判斷各個選項是否正確,從而得出結(jié)論【詳解】∵,∴=,∵,且T=,∴是最小正周期為偶函數(shù),故選B.【點睛】本題主要考查誘導(dǎo)公式,余弦函數(shù)的奇偶性、周期性,屬于基礎(chǔ)題9、B【解析】由已知及一元二次不等式的性質(zhì)可得,討論a結(jié)合原不等式整數(shù)解的個數(shù)求的范圍,【詳解】由恰有2個整數(shù)解,即恰有2個整數(shù)解,所以,解得或,①當(dāng)時,不等式解集為,因為,故2個整數(shù)解為1和2,則,即,解得;②當(dāng)時,不等式解集為,因為,故2個整數(shù)解為,則,即,解得.綜上所述,實數(shù)的取值范圍為或.故選:B.10、D【解析】由題可知,,求出,在由題中的函數(shù)關(guān)系式即可求解.【詳解】由題意可知,,解得,所以函數(shù)的解析式為,所以室溫為30℃時該房間的甲醛濃度約為.故選:D.11、C【解析】根據(jù)二次函數(shù)的對稱軸在區(qū)間的左邊,即可得到答案;【詳解】由題意得:,故選:C12、C【解析】根據(jù)題意,列出所有可能,結(jié)合古典概率,即可求解.【詳解】甲、乙、丙3人投中與否的所有情況為:(中,中,中),(中,中,不中),(中,不中,中),(中,不中,不中),(不中,中,中),(不中,中,不中),(不中,不中,中),(不中,不中,不中),共8種,其中至多有1人投中的有4種,故所求概率為故選:C.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】設(shè)則得到,再利用奇函數(shù)的性質(zhì)得到答案.【詳解】設(shè)則,函數(shù)是定義在上的奇函數(shù)故答案為【點睛】本題考查了利用函數(shù)的奇偶性計算函數(shù)表達式,屬于常考題型.14、【解析】首先換元,再利用三角變換,將函數(shù)轉(zhuǎn)化為關(guān)于二次函數(shù),再求值域.【詳解】設(shè),因為,所以,則,,當(dāng)時,函數(shù)取得最小值,當(dāng)時,函數(shù)取得最大值,所以函數(shù)的值域是故答案為:15、##【解析】先由已知條件求出的值,再由可求出的值【詳解】因冪函數(shù)過點,所以,得,所以,因為,所以,得,故答案為:16、4【解析】由題意可知定點A(1,1),所以m+n=1,因為,所以,當(dāng)時,的最小值為4.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2)在上是減函數(shù),證明見解析【解析】(1)根據(jù)奇函數(shù)的定義即可求出結(jié)果;(2)設(shè),且,然后與,作差,通過因式分解判斷正負,然后根據(jù)單調(diào)性的概念即可得出結(jié)論.【詳解】(1)∵是定義在上的奇函數(shù),∴,∴,此時,,是奇函數(shù),滿足題意∴(2),在上是減函數(shù)設(shè),且,則,∵,∴,,,∴,即,∴在上是減函數(shù)18、(1)(2)【解析】(1)把已知點的坐標(biāo)代入求解即可;(2)直接利用函數(shù)單調(diào)性即可求出結(jié)論,注意真數(shù)大于0的這一隱含條件【小問1詳解】因為函數(shù)(且)的圖象過點.,所以,即;【小問2詳解】因為單調(diào)遞增,所以,即不等式的解集是19、(1)1;(2)2.【解析】(1)利用對數(shù)的運算性質(zhì)可求得原式=lg10=1;(2)同理可求得原式=2log55=2;【詳解】(1)(2)lg20+log10025【點睛】本題考查對數(shù)的運算性質(zhì),熟練掌握積、商、冪的對數(shù)的運算性質(zhì)是解決問題的關(guān)鍵,屬于中檔題20、(1);(2).【解析】(1)利用二倍角公式化簡得,然后利用同角關(guān)系式即得;(2)利用兩角差的正弦公式即求.【小問1詳解】由,得,∵,,∴,∴,∴.【小問2詳解】由(1)知,∴.21、(1)證明見解析;(2)【解析】(1)利用勾股定理得出線線垂直,結(jié)合等邊三角形的特點,再次利用勾股定理得出線線垂直,進而得出線面垂直;(2)根據(jù)線面垂直面,得出線和面的夾角,從而得出線面角的正弦值.【詳解】(1)由,有,從而有,且又是邊長等于的等邊三角形,.又,從而有又平面.(2)過點作交于點,連.由(1)知平面,得,又平面是直線與平面所成的角.由(1),從而為線段的中點,,,所以直線與平面所成的角的正弦值為22、(1)1;(2)見解析;(3)[-1,3).【解析】(1)根據(jù)解得,再利用奇偶性的定義驗證,即可求得實數(shù)的值;(2)先對分離常數(shù)后,判斷出為遞減函數(shù),再利用單調(diào)性的定義作差證明即可;(3)先用函數(shù)的奇函數(shù)性質(zhì),再用減函數(shù)性質(zhì)變形,然后分離參數(shù)可得,在內(nèi)有解,令,只要.【詳解】(1)依題意得,,故,此時,對任意均有,所以是奇函數(shù),所以.(2)在上減函數(shù),證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校學(xué)生心理問題轉(zhuǎn)介制度
- Naphthol-AS-phosphate-disodium-salt-生命科學(xué)試劑-MCE
- Naftifine-hydrochloride-Standard-生命科學(xué)試劑-MCE
- N-Acetyl-L-tyrosine-Standard-生命科學(xué)試劑-MCE
- 苗木養(yǎng)護技術(shù)管理措施方案
- 跨境電商概論學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- m-PEG-DSPE-sodium-MW-2000-生命科學(xué)試劑-MCE
- 消費類半固態(tài)電池項目可行性研究報告
- 廣東省珠海市香洲區(qū)珠海市紫荊中學(xué)2024-2025學(xué)年八年級上學(xué)期11月期中物理試題(無答案)
- 小學(xué)六年級語文教學(xué)工作總結(jié)
- 世界讀書日知識競賽參考題庫250題(含答案)
- 急性顱腦損傷急診科診治流程-
- 【市場營銷(互聯(lián)網(wǎng)營銷)專業(yè)案例分析報告1700字】
- 高等工程數(shù)學(xué)知到章節(jié)答案智慧樹2023年南京理工大學(xué)
- 北京市居住區(qū)公共服務(wù)設(shè)施配套指標(biāo)
- 2023通信原理期中考題及答案
- 點亮人生-大學(xué)生職業(yè)生涯規(guī)劃智慧樹知到答案章節(jié)測試2023年杭州醫(yī)學(xué)院
- 銀行保險理財沙龍課件
- 科技時代人們的時間(孫宏)
- 第4課 部屋に 機と いすが あります 課件【知識精講+備課精研+高效課堂】 高中日語新版標(biāo)準(zhǔn)日本語初級上冊
評論
0/150
提交評論