




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省南洋高級中學(xué)2024年高考仿真模擬數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.點為的三條中線的交點,且,,則的值為()A. B. C. D.2.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.23.已知拋物線的焦點為,若拋物線上的點關(guān)于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.4.為虛數(shù)單位,則的虛部為()A. B. C. D.5.已知復(fù)數(shù),,則()A. B. C. D.6.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點都在球上,則球的表面積為()A. B. C. D.7.的展開式中的一次項系數(shù)為()A. B. C. D.8.將函數(shù)的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.9.在區(qū)間上隨機取一個數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.1110.若單位向量,夾角為,,且,則實數(shù)()A.-1 B.2 C.0或-1 D.2或-111.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.12.正方形的邊長為,是正方形內(nèi)部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,兩個同心圓的半徑分別為和,為大圓的一條直徑,過點作小圓的切線交大圓于另一點,切點為,點為劣弧上的任一點(不包括兩點),則的最大值是__________.14.設(shè)P為有公共焦點的橢圓與雙曲線的一個交點,且,橢圓的離心率為,雙曲線的離心率為,若,則______________.15.已知復(fù)數(shù),其中是虛數(shù)單位.若的實部與虛部相等,則實數(shù)的值為__________.16.一個四面體的頂點在空間直角坐標(biāo)系中的坐標(biāo)分別是,,,,則該四面體的外接球的體積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.18.(12分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設(shè),∠,∠,將沿折起,構(gòu)成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.19.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.(1)求直線l的普通方程和圓C的直角坐標(biāo)方程;(2)直線l與圓C交于A,B兩點,點P(2,1),求|PA|?|PB|的值.20.(12分)有甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪元,送餐員每單制成元;乙公司無底薪,單以內(nèi)(含單)的部分送餐員每單抽成元,超過單的部分送餐員每單抽成元.現(xiàn)從這兩家公司各隨機選取一名送餐員,分別記錄其天的送餐單數(shù),得到如下頻數(shù)分布表:送餐單數(shù)3839404142甲公司天數(shù)101015105乙公司天數(shù)101510105(1)從記錄甲公司的天送餐單數(shù)中隨機抽取天,求這天的送餐單數(shù)都不小于單的概率;(2)假設(shè)同一公司的送餐員一天的送餐單數(shù)相同,將頻率視為概率,回答下列兩個問題:①求乙公司送餐員日工資的分布列和數(shù)學(xué)期望;②小張打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,小張應(yīng)選擇哪家公司應(yīng)聘?說明你的理由.21.(12分)設(shè)函數(shù),().(1)若曲線在點處的切線方程為,求實數(shù)a、m的值;(2)若對任意恒成立,求實數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個不同的實根?證明你的結(jié)論.22.(10分)如圖,三棱柱中,與均為等腰直角三角形,,側(cè)面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進行數(shù)量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.2、B【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.3、B【解析】
由焦點得拋物線方程,設(shè)點的坐標(biāo)為,根據(jù)對稱可求出點的坐標(biāo),寫出直線方程,聯(lián)立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設(shè)點的坐標(biāo)為,點的坐標(biāo)為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設(shè)直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),點關(guān)于直線對稱,屬于中檔題.4、C【解析】
利用復(fù)數(shù)的運算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復(fù)數(shù)的運算以及復(fù)數(shù)的概念,注意復(fù)數(shù)的虛部為,不是,本題為基礎(chǔ)題,也是易錯題.5、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的??紗栴},屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運算,在運算時注意符號的正、負(fù)問題.6、B【解析】
分別取、的中點、,連接、、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過點作平面的垂線與過點作平面的垂線交于點,在中計算出,再利用勾股定理計算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點、,連接、、,由于是以為直角等腰直角三角形,為的中點,,,且、分別為、的中點,所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點,同理可知,的外心為點,分別過點作平面的垂線與過點作平面的垂線交于點,則點在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點睛】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時考查了計算能力,屬于中等題.7、B【解析】
根據(jù)多項式乘法法則得出的一次項系數(shù),然后由等差數(shù)列的前項和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項系數(shù)為.故選:B.【點睛】本題考查二項式定理的應(yīng)用,應(yīng)用多項式乘法法則可得展開式中某項系數(shù).同時本題考查了組合數(shù)公式.8、B【解析】
首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當(dāng)時,最小值為,故選B.【點睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡單題目.9、D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數(shù)列的通項公式,屬于基礎(chǔ)題目.10、D【解析】
利用向量模的運算列方程,結(jié)合向量數(shù)量積的運算,求得實數(shù)的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數(shù)量積的運算,屬于基礎(chǔ)題.11、C【解析】
求得點坐標(biāo),由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點坐標(biāo),進而求得【詳解】拋物線焦點為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【點睛】本小題主要考查拋物線的弦長的求法,屬于基礎(chǔ)題.12、C【解析】
分別以直線為軸,直線為軸建立平面直角坐標(biāo)系,設(shè),根據(jù),可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標(biāo)系.設(shè),,,則,,由,即,得.所以=,所以當(dāng)時,的最小值為.故選:C.【點睛】本題考查向量的數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
以為坐標(biāo)原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,從而可得、,,,然后利用向量數(shù)量積的坐標(biāo)運算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質(zhì)即可求解.【詳解】以為坐標(biāo)原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,則、,由,且,所以,所以,即又平分,所以,則,設(shè),則,,所以,所以,,所以的最大值是.故答案為:【點睛】本題考查了向量數(shù)量積的坐標(biāo)運算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數(shù)的性質(zhì),屬于中檔題.14、【解析】設(shè)根據(jù)橢圓的幾何性質(zhì)可得,根據(jù)雙曲線的幾何性質(zhì)可得,,即故答案為15、【解析】
直接由復(fù)數(shù)代數(shù)形式的乘法運算化簡,結(jié)合已知條件即可求出實數(shù)的值.【詳解】解:的實部與虛部相等,所以,計算得出.故答案為:【點睛】本題考查復(fù)數(shù)的乘法運算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.16、【解析】
將四面體補充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補體法,由空間點坐標(biāo)可知,該四面體的四個頂點在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【點睛】本題主要考查了四面體外接球的常用求法:補體法,通過補體得到長方體的外接球從而得解,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)遞推公式,用配湊法構(gòu)造等比數(shù)列,求其通項公式,進而求出的通項公式;(2)求出數(shù)列的通項公式,利用錯位相減法求數(shù)列的前項和.【詳解】解:(1),,是首項為,公比為的等比數(shù)列.所以,.(2).【點睛】本題考查了由數(shù)列的遞推公式求通項公式,錯位相減法求數(shù)列的前n項和的問題,屬于中檔題.18、(1)證明見解析;(2)【解析】
(1)取AB的中點O,連接,證得,從而證得C′O⊥平面ABD,再結(jié)合面面垂直的判定定理,即可證得平面⊥平面;(2)以O(shè)為原點,AB,OC所在的直線為y軸,z軸,建立的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點O,連接,,在Rt△和Rt△ADB中,AB=2,則=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O?平面,所以平面⊥平面DAB(2)以O(shè)為原點,AB,OC所在的直線為y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,則A(0,-1,0),B(0,1,0),C′(0,0,1),,所以,,,設(shè)平面的法向量為=(),則,即,代入坐標(biāo)得,令,得,,所以,設(shè)平面的法向量為=(),則,即,代入坐標(biāo)得,令,得,,所以,所以,所以二面角A-C′D-B的余弦值為.【點睛】本題考查了面面垂直的判定與證明,以及空間角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過嚴(yán)密推理是線面位置關(guān)系判定的關(guān)鍵,同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.19、(1)直線的普通方程,圓的直角坐標(biāo)方程:.(2)【解析】
(1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進行轉(zhuǎn)換.(2)將直線的參數(shù)方程代入圓的直角坐標(biāo)方程,利用一元二次方程根和系數(shù)關(guān)系式即可求解.【詳解】(1)直線l的參數(shù)方程為(t為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為x+y﹣3=0.圓C的極坐標(biāo)方程為ρ2﹣4ρcosθ=3,轉(zhuǎn)換為直角坐標(biāo)方程為x2+y2﹣4x﹣3=0.(2)把直線l的參數(shù)方程為(t為參數(shù)),代入圓的直角坐標(biāo)方程x2+y2﹣4x﹣3=0,得到,所以|PA||PB|=|t1t2|=6.【點睛】本題考查參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.20、(1);(2)①分布列見解析,;②小張應(yīng)選擇甲公司應(yīng)聘.【解析】
(1)記抽取的3天送餐單數(shù)都不小于40為事件,可得(A)的值.(2)①設(shè)乙公司送餐員送餐單數(shù)為,可得當(dāng)時,,以此類推可得:當(dāng)時,當(dāng)時,的值.當(dāng)時,的值,同理可得:當(dāng)時,.的所有可能取值.可得的分布列及其數(shù)學(xué)期望.②依題意,甲公司送餐員日平均送餐單數(shù).可得甲公司送餐員日平均工資,與乙數(shù)學(xué)期望比較即可得出.【詳解】解:(1)由表知,50天送餐單數(shù)中有30天的送餐單數(shù)不小于40單,記抽取的3天送餐單數(shù)都不小于40為事件,則.(2)①設(shè)乙公司送餐員的送餐單數(shù)為,日工資為元,則當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,.所以的分布列為228234240247254.②依題意,甲公司送餐員的日平均送餐單數(shù)為,所以甲公司送餐員的日平均工資為元,因為,所以小張應(yīng)選擇甲公司應(yīng)聘.【點睛】本題考查了隨機變量的分布列與數(shù)學(xué)期望、古典概率計算公式、組合計算公式,考查了推理能力與計算能力,屬于中檔題.21、(1),;(2);(3)不能,證明見解析【解析】
(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價于對任意恒成立,即時,,利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技助力美食旅游產(chǎn)業(yè)的創(chuàng)新與升級
- 2025至2030年中國熱帶魚圖案浴室套具數(shù)據(jù)監(jiān)測研究報告
- 科技助力下的體育課程創(chuàng)新與趣味性提升
- 承包山崗合同范本
- 社區(qū)治理模式創(chuàng)新與文化資源整合策略
- 銷貨合同范本照片
- 2025至2030年中國深色板材專用漆數(shù)據(jù)監(jiān)測研究報告
- 2024年四川長虹電器股份有限公司招聘運營管理崗位考試真題
- 續(xù)簽兼職合同范本
- 社交電商平臺的用戶體驗設(shè)計與互動性提升
- 【23精品】蘇少小學(xué)美術(shù)三下教案全冊
- 房屋租賃(出租)家私清單
- 倉儲貨架ppt課件
- 《保健按摩師》(五級)理論知識鑒定要素細(xì)目表
- 陳日新腧穴熱敏化艾灸新療法上篇
- 剪紙藝術(shù)-認(rèn)識剪紙
- 駕駛員違規(guī)違章學(xué)習(xí)記錄表
- PID烙鐵恒溫控制器設(shè)計與制作_圖文
- wincc全套腳本總結(jié)
- 簡易瞬態(tài)工況法1
- 中國鐵路總公司環(huán)境保護管理辦法(鐵總計統(tǒng)〔2015〕260號)
評論
0/150
提交評論