版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年廣東省韶關市乳源縣重點達標名校中考數(shù)學模擬預測題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點E在△DBC的邊DB上,點A在△DBC內(nèi)部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結(jié)論:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正確的是()A.①②③④ B.②④ C.①②③ D.①③④2.將弧長為2πcm、圓心角為120°的扇形圍成一個圓錐的側(cè)面,則這個圓錐的高是()A.cm B.2cm C.2cm D.cm3.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°4.如圖,正方形ABCD內(nèi)接于圓O,AB=4,則圖中陰影部分的面積是()A. B. C. D.5.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.46.截至2010年“費爾茲獎”得主中最年輕的8位數(shù)學家獲獎時的年齡分別為29,28,29,31,31,31,29,31,則由年齡組成的這組數(shù)據(jù)的中位數(shù)是()A.28 B.29 C.30 D.317.如圖是一個小正方體的展開圖,把展開圖折疊成小正方體后,有“我”字的一面相對面上的字是()A.國 B.厲 C.害 D.了8.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.9.如圖1,點O為正六邊形對角線的交點,機器人置于該正六邊形的某頂點處,柱柱同學操控機器人以每秒1個單位長度的速度在圖1中給出線段路徑上運行,柱柱同學將機器人運行時間設為t秒,機器人到點A的距離設為y,得到函數(shù)圖象如圖2,通過觀察函數(shù)圖象,可以得到下列推斷:①該正六邊形的邊長為1;②當t=3時,機器人一定位于點O;③機器人一定經(jīng)過點D;④機器人一定經(jīng)過點E;其中正確的有()A.①④ B.①③ C.①②③ D.②③④10.定義運算:a?b=2ab.若a,b是方程x2+x-m=0(m>0)的兩個根,則(a+1)?a-(b+1)?b的值為()A.0B.2C.4mD.-4m二、填空題(共7小題,每小題3分,滿分21分)11.關于x的不等式組的整數(shù)解共有3個,則a的取值范圍是_____.12.受益于電子商務發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務迅猛發(fā)展.預計達州市2018年快遞業(yè)務量將達到5.5億件,數(shù)據(jù)5.5億用科學記數(shù)法表示為_____.13.用一直徑為10cm的玻璃球和一個圓錐形的牛皮紙紙帽可以制成一個不倒翁玩具,不倒翁的軸剖面圖如圖所示,圓錐的母線AB與⊙O相切于點B,不倒翁的頂點A到桌面L的最大距離是18cm.若將圓錐形紙帽的表面全涂上顏色,則需要涂色部分的面積約為cm2(精確到1cm2).14.因式分解:4ax2﹣4ay2=_____.15.甲、乙兩個機器人檢測零件,甲比乙每小時多檢測20個,甲檢測300個比乙檢測200個所用的時間少,若設甲每小時檢測個,則根據(jù)題意,可列出方程:__________.16.某班有54名學生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新學期準備調(diào)整座位,設某個學生原來的座位為(m,n),如果調(diào)整后的座位為(i,j),則稱該生作了平移[a,b]=[m-i,n-j],并稱a+b為該生的位置數(shù).若某生的位置數(shù)為10,則當m+n取最小值時,m?n的最大值為_____________.17.如圖,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分線DE交AC于點D,連接BD,則∠ABD=___________°.三、解答題(共7小題,滿分69分)18.(10分)“食品安全”受到全社會的廣泛關注,我區(qū)兼善中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面的兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為°;(2)請補全條形統(tǒng)計圖;(3)若對食品安全知識達到“了解”程度的學生中,男、女生的比例恰為2:3,現(xiàn)從中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.19.(5分)“六一”期間,小張購述100只兩種型號的文具進行銷售,其中A種型號的文具進價為10元/只,售價為12元,B種型號的文具進價為15元1只,售價為23元/只.(1)小張如何進貨,使進貨款恰好為1300元?(2)如果購進A型文具的數(shù)量不少于B型文具數(shù)量的倍,且要使銷售文具所獲利潤不低于500元,則小張共有幾種不同的購買方案?哪一種購買方案使銷售文具所獲利潤最大?20.(8分)在“植樹節(jié)”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學校植樹活動,規(guī)則如下:在兩個盒子內(nèi)分別裝入標有數(shù)字1,2,3,4的四個和標有數(shù)字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數(shù)字之和小于5,那么小王去,否則就是小李去.(1)用樹狀圖或列表法求出小王去的概率;(2)小李說:“這種規(guī)則不公平”,你認同他的說法嗎?請說明理由.21.(10分)如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=17.2米,設太陽光線與水平地面的夾角為α,當α=60°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一老人坐在MN這層臺階上曬太陽.(取1.73)(1)求樓房的高度約為多少米?(2)過了一會兒,當α=45°時,問老人能否還曬到太陽?請說明理由.22.(10分)計算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.23.(12分)如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B、M兩點的⊙O交BC于點G,交AB于點F,F(xiàn)B恰為⊙O的直徑.(1)判斷AE與⊙O的位置關系,并說明理由;(2)若BC=6,AC=4CE時,求⊙O的半徑.24.(14分)湯姆斯杯世界男子羽毛球團體賽小組賽比賽規(guī)則:兩隊之間進行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊獲勝.假如甲,乙兩隊每局獲勝的機會相同.若前四局雙方戰(zhàn)成2:2,那么甲隊最終獲勝的概率是__________;現(xiàn)甲隊在前兩局比賽中已取得2:0的領先,那么甲隊最終獲勝的概率是多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】分析:只要證明△DAB≌△EAC,利用全等三角形的性質(zhì)即可一一判斷;詳解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正確,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正確,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正確,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正確,故選A.點睛:本題考查全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)等知識,解題的關鍵是正確尋找全等三角形解決問題,屬于中考選擇題中的壓軸題.2、B【解析】
由弧長公式可求解圓錐母線長,再由弧長可求解圓錐底面半徑長,再運用勾股定理即可求解圓錐的高.【詳解】解:設圓錐母線長為Rcm,則2π=,解得R=3cm;設圓錐底面半徑為rcm,則2π=2πr,解得r=1cm.由勾股定理可得圓錐的高為=2cm.故選擇B.【點睛】本題考查了圓錐的概念和弧長的計算.3、B【解析】
試題分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B4、B【解析】
連接OA、OB,利用正方形的性質(zhì)得出OA=ABcos45°=2,根據(jù)陰影部分的面積=S⊙O-S正方形ABCD列式計算可得.【詳解】解:連接OA、OB,∵四邊形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×=2,所以陰影部分的面積=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故選B.【點睛】本題主要考查扇形的面積計算,解題的關鍵是熟練掌握正方形的性質(zhì)和圓的面積公式.5、B【解析】
此題可根據(jù)反比例函數(shù)圖象的對稱性得到A、B兩點關于原點對稱,再由S△ABM=1S△AOM并結(jié)合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【詳解】根據(jù)雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.【點睛】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)常考查的一個知識點.6、C【解析】
根據(jù)中位數(shù)的定義即可解答.【詳解】解:把這些數(shù)從小到大排列為:28,29,29,29,31,31,31,31,最中間的兩個數(shù)的平均數(shù)是:=30,則這組數(shù)據(jù)的中位數(shù)是30;故本題答案為:C.【點睛】此題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).7、A【解析】
正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點作答.【詳解】∴有“我”字一面的相對面上的字是國.故答案選A.【點睛】本題考查的知識點是專題:正方體相對兩個面上的文字,解題的關鍵是熟練的掌握正方體相對兩個面上的文字.8、B【解析】試題分析:結(jié)合三個視圖發(fā)現(xiàn),應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.9、C【解析】
根據(jù)圖象起始位置猜想點B或F為起點,則可以判斷①正確,④錯誤.結(jié)合圖象判斷3≤t≤4圖象的對稱性可以判斷②正確.結(jié)合圖象易得③正確.【詳解】解:由圖象可知,機器人距離點A1個單位長度,可能在F或B點,則正六邊形邊長為1.故①正確;觀察圖象t在3-4之間時,圖象具有對稱性則可知,機器人在OB或OF上,則當t=3時,機器人距離點A距離為1個單位長度,機器人一定位于點O,故②正確;所有點中,只有點D到A距離為2個單位,故③正確;因為機器人可能在F點或B點出發(fā),當從B出發(fā)時,不經(jīng)過點E,故④錯誤.故選:C.【點睛】本題為動點問題的函數(shù)圖象探究題,解答時要注意動點到達臨界前后時圖象的變化趨勢.10、A【解析】【分析】由根與系數(shù)的關系可得a+b=-1然后根據(jù)所給的新定義運算a?b=2ab對式子(a+1)?a-(b+1)?b用新定義運算展開整理后代入進行求解即可.【詳解】∵a,b是方程x2+x-m=0(m>0)的兩個根,∴a+b=-1,∵定義運算:a?b=2ab,∴(a+1)?a-(b+1)?b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故選A.【點睛】本題考查了一元二次方程根與系數(shù)的關系,新定義運算等,理解并能運用新定義運算是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
首先確定不等式組的解集,先利用含a的式子表示,根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關于a的不等式,從而求出a的范圍.【詳解】解:由不等式①得:x>a,由不等式②得:x<1,所以不等式組的解集是a<x<1.∵關于x的不等式組的整數(shù)解共有3個,∴3個整數(shù)解為0,﹣1,﹣2,∴a的取值范圍是﹣3≤a<﹣2.故答案為:﹣3≤a<﹣2.【點睛】本題考查了不等式組的解法及整數(shù)解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.12、5.5×1.【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).詳解:5.5億=550000000=5.5×1,故答案為5.5×1.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.13、174cm1.【解析】直徑為10cm的玻璃球,玻璃球半徑OB=5,所以AO=18?5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=,圓錐底面半徑=BD=,圓錐底面周長=1×π,側(cè)面面積=×1×π×11=.點睛:利用勾股定理可求得圓錐的母線長,進而過B作出垂線,得到圓錐的底面半徑,那么圓錐的側(cè)面積=底面周長×母線長÷1.本題是一道綜合題,考查的知識點較多,利用了勾股定理,圓的周長公式、圓的面積公式和扇形的面積公式求解.把實際問題轉(zhuǎn)化為數(shù)學問題求解是本題的解題關鍵.14、4a(x﹣y)(x+y)【解析】
首先提取公因式4a,再利用平方差公式分解因式即可.【詳解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y).故答案為4a(x-y)(x+y).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.15、【解析】【分析】若設甲每小時檢測個,檢測時間為,乙每小時檢測個,檢測時間為,根據(jù)甲檢測300個比乙檢測200個所用的時間少,列出方程即可.【解答】若設甲每小時檢測個,檢測時間為,乙每小時檢測個,檢測時間為,根據(jù)題意有:.故答案為【點評】考查分式方程的應用,解題的關鍵是找出題目中的等量關系.16、36【解析】
10=a+b=(m-i)+(n-j)=(m+n)-(i+j)所以:m+n=10+i+j當(m+n)取最小值時,(i+j)也必須最小,所以i和j都是2,這樣才能(i+j)才能最小,因此:m+n=10+2=12也就是:當m+n=12時,m·n最大是多少?這就容易了:m·n<=36所以m·n的最大值就是3617、1【解析】∵在△ABC中,AB=BC,∠ABC=110°,
∴∠A=∠C=1°,
∵AB的垂直平分線DE交AC于點D,
∴AD=BD,
∴∠ABD=∠A=1°;
故答案是1.三、解答題(共7小題,滿分69分)18、(1)60,1°.(2)補圖見解析;(3)【解析】
(1)根據(jù)了解很少的人數(shù)和所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;(3)根據(jù)題意先畫出樹狀圖,再根據(jù)概率公式即可得出答案.【詳解】(1)接受問卷調(diào)查的學生共有30÷50%=60(人),扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為360°×=1°,故答案為60,1.(2)了解的人數(shù)有:60﹣15﹣30﹣10=5(人),補圖如下:(3)畫樹狀圖得:?∵共有20種等可能的結(jié)果,恰好抽到1個男生和1個女生的有12種情況,∴恰好抽到1個男生和1個女生的概率為=.【點睛】此題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,讀懂題意,根據(jù)題意求出總?cè)藬?shù)是解題的關鍵;概率=所求情況數(shù)與總情況數(shù)之比.19、(1)A種文具進貨40只,B種文具進貨60只;(2)一共有三種購貨方案,購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【解析】
(1)設可以購進A種型號的文具x只,則可以購進B種型號的文具只,根據(jù)總價=單價×數(shù)量結(jié)合A、B兩種文具的進價及總價,即可得出關于x的一元一次方程,解之即可得出結(jié)論;(2)根據(jù)題意列不等式,解之即可得出x的取值范圍,再根據(jù)一次函數(shù)的性質(zhì),即可解決最值問題.【詳解】(1)設A種文具進貨x只,B種文具進貨只,由題意得:,解得:x=40,,答:A種文具進貨40只,B種文具進貨60只;(2)設購進A型文具a只,則有,且;解得:,∵a為整數(shù),∴a=48、49、50,一共有三種購貨方案;利潤,∵,w隨a增大而減小,當a=48時W最大,即購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【點睛】本題主要考查了一次函數(shù)的實際問題,熟練掌握一次函數(shù)表達式的確定以及自變量取值范圍的確定,最值的求解方法是解決本題的關鍵.20、(1);(2)規(guī)則是公平的;【解析】試題分析:(1)先利用畫樹狀圖展示所有12種等可能的結(jié)果數(shù),然后根據(jù)概率公式求解即可;(2)分別計算出小王和小李去植樹的概率即可知道規(guī)則是否公平.試題解析:(1)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中摸出的球上的數(shù)字之和小于6的情況有9種,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴規(guī)則不公平.點睛:本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)樓房的高度約為17.3米;(2)當α=45°時,老人仍可以曬到太陽.理由見解析.【解析】試題分析:(1)在Rt△ABE中,根據(jù)的正切值即可求得樓高;(2)當時,從點B射下的光線與地面AD的交點為F,與MC的交點為點H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大樓的影子落在臺階MC這個側(cè)面上.即小貓仍可曬到太陽.試題解析:解:(1)當當時,在Rt△ABE中,∵,∴BA=10tan60°=米.即樓房的高度約為17.3米.當時,小貓仍可曬到太陽.理由如下:假設沒有臺階,當時,從點B射下的光線與地面AD的交點為F,與MC的交點為點H.∵∠BFA=45°,∴,此時的影長AF=BA=17.3米,所以CF=AF-AC=17.3-17.2=0.1.∴CH=CF=0.1米,∴大樓的影
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學年高中政治第三單元文化傳承與文化創(chuàng)新8.3正確對待外來文化課時作業(yè)含解析新人教版必修4
- 山西警察學院《城鄉(xiāng)規(guī)劃原理一》2023-2024學年第一學期期末試卷
- 2025年度碼頭租賃及港口物流配送、倉儲及代理服務合同4篇
- 二零二五年度道路貨物運輸合同范本2篇
- 2025年度葡萄種植基地土地流轉(zhuǎn)服務合同4篇
- 2025年度煤炭行業(yè)節(jié)能減排技術改造合同集錦4篇
- 2025年度光伏發(fā)電基地場地平整及配套設施承包合同4篇
- 二零二五版物流倉儲設施分期支用借款合同3篇
- 二零二五版軟件工程團隊保密協(xié)議與項目成果共享協(xié)議3篇
- 2025年度臨時宗教場所租賃合同范本4篇
- 第二章 運營管理戰(zhàn)略
- 《三本白皮書》全文內(nèi)容及應知應會知識點
- 專題14 思想方法專題:線段與角計算中的思想方法壓軸題四種模型全攻略(解析版)
- 醫(yī)院外來器械及植入物管理制度(4篇)
- 圖像識別領域自適應技術-洞察分析
- 港口與港口工程概論
- 《念珠菌感染的治療》課件
- 新概念英語第二冊考評試卷含答案(第49-56課)
- 商業(yè)倫理與企業(yè)社會責任(山東財經(jīng)大學)智慧樹知到期末考試答案章節(jié)答案2024年山東財經(jīng)大學
- 【奧運會獎牌榜預測建模實證探析12000字(論文)】
- (完整版)譯林版英語詞匯表(四年級下)
評論
0/150
提交評論