




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第09課一元二次方程單元檢測(cè)(一)一、單選題1.下列方程是一元二次方程的是()A. B.C. D.2.若關(guān)于x的一元二次方程kx2+2x–1=0有實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是()A.k≥–1 B.k>–1C.k≥–1且k≠0 D.k>–1且k≠03.我國“一帶一路”戰(zhàn)略給沿線國家和地區(qū)帶來很大的經(jīng)濟(jì)效益,沿線某地區(qū)居民2017年年收入美元,預(yù)計(jì)2019年年收入將達(dá)到美元,設(shè)2017年到2019年該地區(qū)居民年人均收入平均增長(zhǎng)率為,可列方程為A. B.C. D.4.一個(gè)等腰三角形的兩條邊長(zhǎng)分別是方程的兩根,則該等腰三角形的周長(zhǎng)是()A.12 B.9 C.13 D.12或95.若關(guān)于x的方程x2﹣2x+m=0的一個(gè)根為﹣1,則另一個(gè)根為()A.﹣3 B.﹣1 C.1 D.36.一元二次方程x2+6x﹣5=0配方后可化為()A.(x+3)2=5 B.(x+3)2=14C.(x﹣3)2=5 D.(x﹣3)2=147.關(guān)于x的一元二次方程﹣kx2﹣6x+3=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是()A.k>﹣3 B.k<3 C.k<3且k≠0 D.k>﹣3且k≠08.如圖,把一塊長(zhǎng)為50cm,寬為40cm的矩形硬紙板的四角剪去四個(gè)相同小正方形,然后把紙板的四邊沿虛線折起,并用膠帶粘好,即可做成一個(gè)無蓋紙盒.若該無蓋紙盒的底面積為400cm2,設(shè)剪去小正方形的邊長(zhǎng)為xcm,則可列方程為()A. B.C. D.9.已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0),下列命題是真命題的有()①若a+2b+4c=0,則方程ax2+bx+c=0必有實(shí)數(shù)根;②若b=3a+2,c=2a+2,則方程ax2+bx+c=0必有兩個(gè)不相等的實(shí)根;③若c是方程ax2+bx+c=0的一個(gè)根,則一定有ac+b+1=0成立;④若t是一元二次方程ax2+bx+c=0的根,則b2﹣4ac=(2at+b)2.A.①② B.②③ C.①④ D.③④二、填空題10.已知一元二次方程的一個(gè)根為0,則________.11.如圖,在一塊長(zhǎng)15m,寬10m的矩形空地上,修建兩條同樣寬且相互垂直的道路,剩余部分栽種花草,要使綠化面積為,設(shè)修建的路寬為xm,則滿足的方程是______.12.據(jù)美國約翰斯霍普金斯大學(xué)發(fā)布的全球新冠肺炎數(shù)據(jù)實(shí)時(shí)統(tǒng)計(jì)系統(tǒng),截至美國東部時(shí)間3月28日晚6時(shí),全美共報(bào)告新冠肺炎確診人數(shù)超過3025萬,死亡超過54.9萬.已知有一人患了新冠肺炎,經(jīng)過兩輪傳染后,共有144人患了新冠肺炎,每輪傳染中平均每人傳染了__________人.13.一元二次方程的兩個(gè)根為則的值為__________14.若方程,滿足則方程必有一根為___.15.已知方程,則的值為_________.16.如果兩個(gè)數(shù)的差為3,并且它們的積為88,那么其中較大的一個(gè)數(shù)為_____.三、解答題17.按照指定方法解下列方程:(1).(自選方法)(2).(配方法)(3)(因式分解法)18.已知關(guān)于x的方程3x2–(a–3)x–a=0(a>0).(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)若方程有一個(gè)根大于2,求a的取值范圍.19.某扶貧單位為了提高貧困戶的經(jīng)濟(jì)收入,購買了33m的鐵柵欄,準(zhǔn)各用這些鐵柵欄為貧困戶靠墻(墻長(zhǎng)15m)圍建一個(gè)中間帶有鐵柵欄的矩形養(yǎng)雞場(chǎng)(如圖所示),(1)若要建的矩形養(yǎng)雞場(chǎng)面積為90m2,求雞場(chǎng)的長(zhǎng)(AB)和寬(BC);(2)該扶貧單位想要建一個(gè)100m2的矩形養(yǎng)雞場(chǎng),這一想法能實(shí)現(xiàn)嗎?請(qǐng)說明理由.20.已知:如圖所示,在中,,,,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以的速度移動(dòng).當(dāng)P、Q兩點(diǎn)中有一點(diǎn)到達(dá)終點(diǎn),則同時(shí)停止運(yùn)動(dòng).(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,的面積等于?(2)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,PQ的長(zhǎng)度等于?(3)的面積能否等于?請(qǐng)說明理由.21.某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為80元,銷售價(jià)為120元時(shí),每天可售出20件,為了迎接“五一”國際勞動(dòng)節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,盡快減少庫存,增加利潤(rùn).經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2件.(1)設(shè)每件童裝降價(jià)元時(shí),每天可銷售______件,每件盈利______元;(用的代數(shù)式表示)(2)為了擴(kuò)大銷售量,盡快減少庫存,每件童裝降價(jià)多少元時(shí),平均每天贏利1200元;(3)平均每天贏利1300元,可能嗎?請(qǐng)說明理由.第09課一元二次方程單元檢測(cè)(一)一、單選題1.下列方程是一元二次方程的是()A. B.C. D.【答案】C【解析】【分析】根據(jù)一元二次方程的定義即可解答.【詳解】選項(xiàng)A,方程含有分式,選項(xiàng)A不是一元二次方程;選項(xiàng)B,方程中含有兩個(gè)未知數(shù),選項(xiàng)B不是一元二次方程;選項(xiàng)C,符合一元二次方程的定義,選項(xiàng)C是一元二次方程;選項(xiàng)D,原方程化簡(jiǎn)后為-4x+15=0,是一元一次方程,選項(xiàng)D不是一元二次方程.故選C.【點(diǎn)睛】本題考查了一元二次方程的定義,熟知一元二次方程的定義是解決問題的關(guān)鍵.2.若關(guān)于x的一元二次方程kx2+2x–1=0有實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是A.k≥–1 B.k>–1C.k≥–1且k≠0 D.k>–1且k≠0【答案】C【詳解】解:∵一元二次方程kx2﹣2x﹣1=0有兩個(gè)實(shí)數(shù)根,∴△=b2﹣4ac=4+4k≥0,且k≠0,解得:k≥﹣1且k≠0.故選C.點(diǎn)睛:此題考查了一元二次方程根的判別式,根的判別式的值大于0,方程有兩個(gè)不相等的實(shí)數(shù)根;根的判別式的值等于0,方程有兩個(gè)相等的實(shí)數(shù)根;根的判別式的值小于0,方程沒有實(shí)數(shù)根.3.我國“一帶一路”戰(zhàn)略給沿線國家和地區(qū)帶來很大的經(jīng)濟(jì)效益,沿線某地區(qū)居民2017年年收入美元,預(yù)計(jì)2019年年收入將達(dá)到美元,設(shè)2017年到2019年該地區(qū)居民年人均收入平均增長(zhǎng)率為,可列方程為A. B.C. D.【答案】B【解析】【分析】關(guān)于增長(zhǎng)率問題,一般用增長(zhǎng)后的量=增長(zhǎng)前的量×(1+增長(zhǎng)率),如果設(shè)2017年到2019年該地區(qū)居民年人均收入平均增長(zhǎng)率為x,那么根據(jù)題意可用x表示2019地區(qū)居民年人均收入,然后根據(jù)已知可以得出方程【詳解】根據(jù)題意得出等量關(guān)系:增長(zhǎng)率=即,故選B.【點(diǎn)睛】此題考查由實(shí)際問題抽象出一元二次方程,解題關(guān)鍵在于列出方程4.一個(gè)等腰三角形的兩條邊長(zhǎng)分別是方程的兩根,則該等腰三角形的周長(zhǎng)是()A.12 B.9 C.13 D.12或9【答案】A【詳解】因式分解可得:(x-2)(x-5)=0,解得:=2,=5,當(dāng)2為底,5為腰時(shí),則三角形的周長(zhǎng)為12;當(dāng)5為底,2為腰時(shí),則無法構(gòu)成三角形,故選A.5.若關(guān)于x的方程x2﹣2x+m=0的一個(gè)根為﹣1,則另一個(gè)根為()A.﹣3 B.﹣1 C.1 D.3【答案】D【解析】【分析】設(shè)方程另一個(gè)根為x1,根據(jù)一元二次方程根與系數(shù)的關(guān)系得到x1+(-1)=2,解此方程即可.【詳解】解:設(shè)方程另一個(gè)根為x1,∴x1+(﹣1)=2,解得x1=3.故選:D.【點(diǎn)睛】本題考查一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程的兩根分別為x1,x2,則x1+x2=-,x1?x2=.6.一元二次方程x2+6x﹣5=0配方后可化為()A.(x+3)2=5 B.(x+3)2=14C.(x﹣3)2=5 D.(x﹣3)2=14【答案】B【分析】直接利用配方法進(jìn)行求解.【詳解】解:,,,故選:B.【點(diǎn)睛】本題考查了配方法,解題的關(guān)鍵是:掌握配方法的基本操作步驟.7.關(guān)于x的一元二次方程﹣kx2﹣6x+3=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是()A.k>﹣3 B.k<3 C.k<3且k≠0 D.k>﹣3且k≠0【答案】D【分析】根據(jù)方程有兩個(gè)不相等的實(shí)數(shù)根,則根的判別式的值大于0,列出關(guān)于k的不等式,求出不等式的解集,即可得到k的范圍,同時(shí)注意二次項(xiàng)的系數(shù)不為0.【詳解】解:∵關(guān)于x的一元二次方程﹣kx2﹣6x+3=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△>0且-k≠0,∴36-4×(-k)×3>0且k≠0,
∴k>﹣3且k≠0,
故選:D.【點(diǎn)睛】本題主要考查根的判別式,熟練掌握一元二次方程根的個(gè)數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.8.如圖,把一塊長(zhǎng)為50cm,寬為40cm的矩形硬紙板的四角剪去四個(gè)相同小正方形,然后把紙板的四邊沿虛線折起,并用膠帶粘好,即可做成一個(gè)無蓋紙盒.若該無蓋紙盒的底面積為400cm2,設(shè)剪去小正方形的邊長(zhǎng)為xcm,則可列方程為()A. B.C. D.【答案】B【分析】分別用代數(shù)式表示出底面矩形的長(zhǎng)和寬,即可列出方程【詳解】根據(jù)題意,底面矩形的長(zhǎng)為:,寬為:,根據(jù)題意得:故選B【點(diǎn)睛】本題考查了一元二次方程的應(yīng)用,根據(jù)題意求出底面矩形的長(zhǎng)和寬是解題的關(guān)鍵.9.已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0),下列命題是真命題的有()①若a+2b+4c=0,則方程ax2+bx+c=0必有實(shí)數(shù)根;②若b=3a+2,c=2a+2,則方程ax2+bx+c=0必有兩個(gè)不相等的實(shí)根;③若c是方程ax2+bx+c=0的一個(gè)根,則一定有ac+b+1=0成立;④若t是一元二次方程ax2+bx+c=0的根,則b2﹣4ac=(2at+b)2.A.①② B.②③ C.①④ D.③④【答案】C【分析】①正確,利用判別式判斷即可.②錯(cuò)誤,a=-2時(shí),方程有相等的實(shí)數(shù)根.③錯(cuò)誤,c=0時(shí),結(jié)論不成立.④正確,利用求根公式,判斷即可.【詳解】解:①∵a+2b+4c=0,∴a=-2b-4c,∴方程為(-2b-4c)x2+bx+c=0,∴Δ=b2-4(-2b-4c)?c=b2+8bc+16c2=(b+4c)2≥0,∴方程ax2+bx+c=0必有實(shí)數(shù)根,故①正確.②∵b=3a+2,c=2a+2,∴方程為ax2+(3a+2)x+2a+2=0,∴Δ=(3a+2)2-4a(2a+2)=a2+4a+4=(a+2)2,當(dāng)a=-2時(shí),Δ=0,方程有相等的實(shí)數(shù)根,故②錯(cuò)誤,③當(dāng)c=0時(shí),c是方程ax2+bx=0的根,但是b+1不一定等于0,故③錯(cuò)誤.④∵t是一元二次方程ax2+bx+c=0的根,∴t=,∴2at+b=±,∴b2-4ac=(2at+b)2,故④正確,故選:C.【點(diǎn)睛】本題考查命題與定理,一元二次方程的根的判別式,公式法解一元二次方程等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)解決問題,屬于中考??碱}型.二、填空題10.已知一元二次方程的一個(gè)根為0,則________.【答案】-2【分析】把x=0代入已知方程,列出關(guān)于m的新方程,通過解新方程可以求得m的值.【詳解】解:根據(jù)題意將x=0代入原方程得:m2-4=0,解得:m=2或m=-2,又∵m-2≠0,即m≠2,∴m=-2,故答案為:-2.【點(diǎn)睛】本題考查了一元二次方程的解的定義.能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解,特別需要注意的條件是二次項(xiàng)系數(shù)不等于0.11.如圖,在一塊長(zhǎng)15m,寬10m的矩形空地上,修建兩條同樣寬且相互垂直的道路,剩余部分栽種花草,要使綠化面積為,設(shè)修建的路寬為xm,則滿足的方程是______.【答案】1【分析】把所修的兩條道路分別平移到矩形的最上邊和最左邊,則剩下的草坪是一個(gè)長(zhǎng)方形,根據(jù)長(zhǎng)方形的面積公式列方程求解即可.【詳解】解:根據(jù)題意得:,解得:(不合題意,舍去),則道路的寬為1米;故答案為:1.【點(diǎn)睛】本題考查了一元一次方程的應(yīng)用,把中間修建的兩條道路分別平移到矩形底面的最上邊和最左邊是做本題的關(guān)鍵.12.據(jù)美國約翰斯霍普金斯大學(xué)發(fā)布的全球新冠肺炎數(shù)據(jù)實(shí)時(shí)統(tǒng)計(jì)系統(tǒng),截至美國東部時(shí)間3月28日晚6時(shí),全美共報(bào)告新冠肺炎確診人數(shù)超過3025萬,死亡超過54.9萬.已知有一人患了新冠肺炎,經(jīng)過兩輪傳染后,共有144人患了新冠肺炎,每輪傳染中平均每人傳染了__________人.【答案】11【分析】設(shè)每輪傳染中平均每人傳染了人,再根據(jù)“經(jīng)過兩輪傳染后,共有144人患了新冠肺炎”建立方程,解方程即可得.【詳解】解:設(shè)每輪傳染中平均每人傳染了人,由題意得:,解得或(不符題意,舍去),即每輪傳染中平均每人傳染了11人,故答案為:11.【點(diǎn)睛】本題考查了一元二次方程的實(shí)際應(yīng)用,正確建立方程是解題關(guān)鍵.13.一元二次方程的兩個(gè)根為則的值為__________【答案】【分析】根據(jù)x1,x2是一元二次方程的兩個(gè)根,可以求得,,代入計(jì)算即可.【詳解】解:∵的兩個(gè)根為,∴,,∴==,故答案為:.【點(diǎn)睛】本題考查根與系數(shù)的關(guān)系、一元二次方程的解,解題的關(guān)鍵是找出所求問題需要的條件.14.若方程,滿足則方程必有一根為___.【答案】-3【分析】將代入原方程并整理,可得到系數(shù)之間的關(guān)系滿足題意,由此確定出答案即可.【詳解】當(dāng)時(shí),代入原方程得:,即:,∴原方程必有一根為,故答案為:-3.【點(diǎn)睛】本題考查一元二次方程根的定義,理解根的定義,并且熟記常見的幾組未知數(shù)的值對(duì)應(yīng)的系數(shù)關(guān)系是解題關(guān)鍵.15.已知方程,則的值為_________.【答案】3【分析】設(shè)a=x2+y2,把原方程變?yōu)閍2-2a-3=0,求得方程的解即可.【詳解】解:a=x2+y2,則原方程變?yōu)閍2-2a-3=0,解得:a1=-1,a2=3,∵x2+y2≥0,∴x2+y2=3.故答案為:3.【點(diǎn)睛】此題考查換元法解一元二次方程,滲透整體思想,注意非負(fù)數(shù)的性質(zhì).16.如果兩個(gè)數(shù)的差為3,并且它們的積為88,那么其中較大的一個(gè)數(shù)為_____.【答案】11或﹣8【分析】根據(jù)題意設(shè)較小的數(shù)為x,表示出較大的數(shù),列出方程求出解即可.【詳解】解:設(shè)較小的數(shù)為x,則較大的數(shù)為x+3,根據(jù)題意得:x(x+3)=88,即x2+3x﹣88=0,分解因式得:(x﹣8)(x+11)=0,解得:x=8或x=﹣11,∴x+3=11或﹣8,則較大的數(shù)為11或﹣8,故答案為:11或﹣8.【點(diǎn)睛】本題主要考查一元二次方程的應(yīng)用,弄清題意并根據(jù)題意列出方程求出解是解答本題的關(guān)鍵.三、解答題17.按照指定方法解下列方程:(1).(自選方法)(2).(配方法)(3)(因式分解法)【答案】(1);(2),;(3).【分析】(1)原方程整理成一元二次方程的一般形式,用因式分解法即可;(2)先把二次項(xiàng)系數(shù)化為1,即兩邊都除以3,然后配方即可;(3)方程兩邊分別分解因式,再把左邊移項(xiàng)后,提取公因式即可.【詳解】(1)原方程整理得:即∴(2)方程兩邊同除以3,得:配方,得:根據(jù)平方根的定義,得:或解得:,(3)兩邊分解因式得:(x+3)(x-3)=2(x+3)即:(x+3)(x-3)-2(x+3)=0提取公因式得:(x+3)(x-5)=0∴x+3=0或x-5=0∴【點(diǎn)睛】本題考查了一元二次方程的解法,一元二次方程的解法較多,有直接開平方法,配方法,公式法及因式分解法等方法,要根據(jù)方程的特點(diǎn)靈活選取適當(dāng)?shù)姆椒?,提高解方程的速度?8.已知關(guān)于x的方程3x2–(a–3)x–a=0(a>0).(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)若方程有一個(gè)根大于2,求a的取值范圍.【答案】(1)證明見解析(2)a>6【詳解】試題分析:(1)先計(jì)算根的判別式得到△=(a+3)2,然后根據(jù)a>0得到△>0,則可根據(jù)判別式的意義得到結(jié)論;(2)利用公式法求得方程的兩個(gè)解為x1=-1,x2=,再由方程有一個(gè)根大于2,列出不等式,解不等式即可求得a的取值.試題解析:(1)證明:Δ=(a-3)2-4×3×(-a)=(a+3)2.∵a>0,∴(a+3)2>0,即Δ>0.∴方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)∵Δ=(a+3)2>0,由求根公式得x=,∴x1=-1,x2=.∵方程有一個(gè)根大于2,∴>2.∴a>6.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.19.某扶貧單位為了提高貧困戶的經(jīng)濟(jì)收入,購買了33m的鐵柵欄,準(zhǔn)各用這些鐵柵欄為貧困戶靠墻(墻長(zhǎng)15m)圍建一個(gè)中間帶有鐵柵欄的矩形養(yǎng)雞場(chǎng)(如圖所示),(1)若要建的矩形養(yǎng)雞場(chǎng)面積為90m2,求雞場(chǎng)的長(zhǎng)(AB)和寬(BC);(2)該扶貧單位想要建一個(gè)100m2的矩形養(yǎng)雞場(chǎng),這一想法能實(shí)現(xiàn)嗎?請(qǐng)說明理由.【答案】(1)雞場(chǎng)的長(zhǎng)(AB)為15m,寬(BC)為6m;(2)不能,理由見解析.【分析】(1)設(shè)BC=xm,則AB=(33-3x)m,根據(jù)矩形的面積公式結(jié)合矩形養(yǎng)雞場(chǎng)面積為90m2,即可得出關(guān)于x的一元二次方程,解之即可求出x的值,分別代入(33-3x)中,取使得(33-3x)小于等于15的值即可得出結(jié)論;(2)不能,理由如下,設(shè)BC=ym,則AB=(33-3y)m,同(1)可得出關(guān)于y的一元二次方程,由根的判別式△=-111<0,即可得出結(jié)論.【詳解】解:(1)設(shè)BC=xm,則AB=(33-3x)m,依題意,得:x(33-3x)=90,解得:x1=6,x2=5.當(dāng)x=6時(shí),33-3x=15,符合題意,當(dāng)x=5時(shí),33-3x=18,18>15,不合題意,舍去.答:雞場(chǎng)的長(zhǎng)(AB)為15m,寬(BC)為6m.(2)不能,理由如下:設(shè)BC=ym,則AB=(33-3y)m,依題意,得:y(33-3y)=100,整理,得:3y2-33y+100=0.∵△=(-33)2-4×3×100=-111<0,∴該方程無解,即該扶貧單位不能建成一個(gè)100m2的矩形養(yǎng)雞場(chǎng).【點(diǎn)睛】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.20.已知:如圖所示,在中,,,,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以的速度移動(dòng).當(dāng)P、Q兩點(diǎn)中有一點(diǎn)到達(dá)終點(diǎn),則同時(shí)停止運(yùn)動(dòng).(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,的面積等于?(2)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,PQ的長(zhǎng)度等于?(3)的面積能否等于?請(qǐng)說明理由.【答案】(1)1秒;(2)3秒;(3)不能,理由見解析【分析】(1)設(shè)P、Q分別從A、B兩點(diǎn)出發(fā),x秒后,AP=xcm,PB=(5-x)cm,BQ=2xcm,則△PBQ的面積等于×2x(5-x),令該式等于4,列出方程求出符合題意的解;(2)利用勾股定理列出方程求解即可;(3)看△PBQ的面積能否等于7cm2,只需令×2t(5-t)=7,化簡(jiǎn)該方程后,判斷該方程的與0的關(guān)系
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際貿(mào)易買賣合同模板
- 采購合同協(xié)議樣本
- 機(jī)械租賃安全規(guī)范合同版
- 供熱服務(wù)保障合同
- 工廠購銷合同范本
- 城市戶外廣告投放工程合同
- 塔吊設(shè)備供應(yīng)合同
- 采購與供應(yīng)合同協(xié)議書范本
- 長(zhǎng)期倉庫租賃合同模板
- 寵物貓咪領(lǐng)養(yǎng)及養(yǎng)護(hù)合同2025
- 少兒美術(shù)幼兒園課件- 4-6歲 《沙漠鴕鳥》
- ChatGPT人工智能與通用大模型演講稿
- 撤場(chǎng)通知書( 模板)
- richcui美國sspc富鋅底漆解讀
- IATF169492016內(nèi)部審核報(bào)告范例
- 人教版高中地理必修一全冊(cè)測(cè)試題(16份含答案)
- 成果導(dǎo)向(OBE)教育理念課件
- 交通運(yùn)輸概論全套PPT完整教學(xué)課件
- 西北工業(yè)大學(xué)英文簡(jiǎn)介
- 《動(dòng)畫場(chǎng)景設(shè)計(jì)》第一章 動(dòng)畫場(chǎng)景設(shè)計(jì)概述
- 2023年湖北宜昌伍家新城投資控股集團(tuán)有限公司招聘筆試題庫含答案解析
評(píng)論
0/150
提交評(píng)論