2024屆福建廈門華僑中學中考適應性考試數(shù)學試題含解析_第1頁
2024屆福建廈門華僑中學中考適應性考試數(shù)學試題含解析_第2頁
2024屆福建廈門華僑中學中考適應性考試數(shù)學試題含解析_第3頁
2024屆福建廈門華僑中學中考適應性考試數(shù)學試題含解析_第4頁
2024屆福建廈門華僑中學中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆福建廈門華僑中學中考適應性考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.對于兩組數(shù)據(jù)A,B,如果sA2>sB2,且,則()A.這兩組數(shù)據(jù)的波動相同 B.數(shù)據(jù)B的波動小一些C.它們的平均水平不相同 D.數(shù)據(jù)A的波動小一些2.世界因愛而美好,在今年我校的“獻愛心”捐款活動中,九年級三班50名學生積極加獻愛心捐款活動,班長將捐款情況進行了統(tǒng)計,并繪制成了統(tǒng)計圖,根據(jù)圖中提供的信息,捐款金額的眾數(shù)和中位數(shù)分別是A.20、20 B.30、20 C.30、30 D.20、303.如圖是一個小正方體的展開圖,把展開圖折疊成小正方體后,有“我”字的一面相對面上的字是()A.國 B.厲 C.害 D.了4.下列各數(shù)中,最小的數(shù)是()A.0 B. C. D.5.“車輛隨機到達一個路口,遇到紅燈”這個事件是()A.不可能事件 B.不確定事件 C.確定事件 D.必然事件6.一次函數(shù)的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.一小組8位同學一分鐘跳繩的次數(shù)如下:150,176,168,183,172,164,168,185,則這組數(shù)據(jù)的中位數(shù)為()A.172 B.171 C.170 D.1688.下列實數(shù)為無理數(shù)的是()A.-5 B. C.0 D.π9.甲、乙兩人參加射擊比賽,每人射擊五次,命中的環(huán)數(shù)如下表:次序第一次第二次第三次第四次第五次甲命中的環(huán)數(shù)(環(huán))67868乙命中的環(huán)數(shù)(環(huán))510767根據(jù)以上數(shù)據(jù),下列說法正確的是()A.甲的平均成績大于乙 B.甲、乙成績的中位數(shù)不同C.甲、乙成績的眾數(shù)相同 D.甲的成績更穩(wěn)定10.下列判斷正確的是()A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上B.天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件D.“a是實數(shù),|a|≥0”是不可能事件11.在3,0,-2,-2四個數(shù)中,最小的數(shù)是()A.3 B.0 C.-2 D.-212.如圖,在中,D、E分別在邊AB、AC上,,交AB于F,那么下列比例式中正確的是A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,⊙O是△ABC的外接圓,∠AOB=70°,AB=AC,則∠ABC=__.

14.如圖所示,四邊形ABCD中,,對角線AC、BD交于點E,且,,若,,則CE的長為_____.15.如圖,CD是⊙O直徑,AB是弦,若CD⊥AB,∠BCD=25°,則∠AOD=_____°.16.如圖,Rt△ABC中,AC=3,BC=4,∠ACB=90°,P為AB上一點,且AP=2BP,若點A繞點C順時針旋轉(zhuǎn)60°,則點P隨之運動的路徑長是_________17.在某一時刻,測得一根長為1.5m的標桿的影長為3m,同時測得一根旗桿的影長為26m,那么這根旗桿的高度為_____m.18.《九章算術(shù)》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學成就.《九章算術(shù)》中記載:“今有牛五、羊二,直金十兩;牛二、羊五,直金八兩.問:牛、羊各直金幾何?”譯文:“假設(shè)有5頭牛、2只羊,值金10兩;2頭牛、5只羊,值金8兩.問:每頭牛、每只羊各值金多少兩?”設(shè)每頭牛值金x兩,每只羊值金y兩,可列方程組為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,∠B=∠C=40°,點D、點E分別從點B、點C同時出發(fā),在線段BC上作等速運動,到達C點、B點后運動停止.求證:△ABE≌△ACD;若AB=BE,求∠DAE的度數(shù);拓展:若△ABD的外心在其內(nèi)部時,求∠BDA的取值范圍.20.(6分)如圖,已知二次函數(shù)與x軸交于A、B兩點,A在B左側(cè),點C是點A下方,且AC⊥x軸.(1)已知A(-3,0),B(-1,0),AC=OA.①求拋物線解析式和直線OC的解析式;②點P從O出發(fā),以每秒2個單位的速度沿x軸負半軸方向運動,Q從O出發(fā),以每秒個單位的速度沿OC方向運動,運動時間為t.直線PQ與拋物線的一個交點記為M,當2PM=QM時,求t的值(直接寫出結(jié)果,不需要寫過程)(2)過C作直線EF與拋物線交于E、F兩點(E、F在x軸下方),過E作EG⊥x軸于G,連CG,BF,求證:CG∥BF21.(6分)某高科技產(chǎn)品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:員工管理人員普通工作人員人員結(jié)構(gòu)總經(jīng)理部門經(jīng)理科研人員銷售人員高級技工中級技工勤雜工員工數(shù)(名)1323241每人月工資(元)2100084002025220018001600950請你根據(jù)上述內(nèi)容,解答下列問題:該公司“高級技工”有名;所有員工月工資的平均數(shù)x為2500元,中位數(shù)為元,眾數(shù)為元;小張到這家公司應聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個數(shù)據(jù)向小張介紹員工的月工資實際水平更合理些;去掉四個管理人員的工資后,請你計算出其他員工的月平均工資(結(jié)果保留整數(shù)),并判斷能否反映該公司員工的月工資實際水平.22.(8分)為改善生態(tài)環(huán)境,防止水土流失,某村計劃在荒坡上種1000棵樹.由于青年志愿者的支援,每天比原計劃多種25%,結(jié)果提前5天完成任務,原計劃每天種多少棵樹?23.(8分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.24.(10分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,求海警船到大事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)25.(10分)如圖,點在線段上,,,.求證:.26.(12分)某興趣小組進行活動,每個男生都頭戴藍色帽子,每個女生都頭戴紅色帽子.帽子戴好后,每個男生都看見戴紅色帽子的人數(shù)比戴藍色帽子的人數(shù)的2倍少1,而每個女生都看見戴藍色帽子的人數(shù)是戴紅色帽子的人數(shù)的.問該興趣小組男生、女生各有多少人?27.(12分)為提高節(jié)水意識,小申隨機統(tǒng)計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進行整理后,繪制成如圖所示的統(tǒng)計圖.(單位:升)(1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;(3)請你根據(jù)統(tǒng)計圖中的信息,給小申家提出一條合理的節(jié)約用水建議,并估算采用你的建議后小申家一個月(按30天計算)的節(jié)約用水量.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:方差越小,波動越小.數(shù)據(jù)B的波動小一些.故選B.點睛:本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.2、C【解析】分析:由表提供的信息可知,一組數(shù)據(jù)的眾數(shù)是這組數(shù)中出現(xiàn)次數(shù)最多的數(shù),而中位數(shù)則是將這組數(shù)據(jù)從小到大(或從大到?。┮来闻帕袝r,處在最中間位置的數(shù),據(jù)此可知這組數(shù)據(jù)的眾數(shù),中位數(shù).詳解:根據(jù)右圖提供的信息,捐款金額的眾數(shù)和中位數(shù)分別是30,30.故選C.點睛:考查眾數(shù)和中位數(shù)的概念,熟記概念是解題的關(guān)鍵.3、A【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點作答.【詳解】∴有“我”字一面的相對面上的字是國.故答案選A.【點睛】本題考查的知識點是專題:正方體相對兩個面上的文字,解題的關(guān)鍵是熟練的掌握正方體相對兩個面上的文字.4、D【解析】

根據(jù)實數(shù)大小比較法則判斷即可.【詳解】<0<1<,故選D.【點睛】本題考查了實數(shù)的大小比較的應用,掌握正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)比較大小,其絕對值大的反而小是解題的關(guān)鍵.5、B【解析】

根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】“車輛隨機到達一個路口,遇到紅燈”是隨機事件.故選:.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的實際;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.6、B【解析】

由二次函數(shù),可得函數(shù)圖像經(jīng)過一、三、四象限,所以不經(jīng)過第二象限【詳解】解:∵,∴函數(shù)圖象一定經(jīng)過一、三象限;又∵,函數(shù)與y軸交于y軸負半軸,

∴函數(shù)經(jīng)過一、三、四象限,不經(jīng)過第二象限故選B【點睛】此題考查一次函數(shù)的性質(zhì),要熟記一次函數(shù)的k、b對函數(shù)圖象位置的影響7、C【解析】

先把所給數(shù)據(jù)從小到大排列,然后根據(jù)中位數(shù)的定義求解即可.【詳解】從小到大排列:150,164,168,168,,172,176,183,185,∴中位數(shù)為:(168+172)÷2=170.故選C.【點睛】本題考查了中位數(shù),如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).8、D【解析】

無理數(shù)就是無限不循環(huán)小數(shù).理解無理數(shù)的概念,一定要同時理解有理數(shù)的概念,有理數(shù)是整數(shù)與分數(shù)的統(tǒng)稱.即有限小數(shù)和無限循環(huán)小數(shù)是有理數(shù),而無限不循環(huán)小數(shù)是無理數(shù).由此即可判定選擇項.【詳解】A、﹣5是整數(shù),是有理數(shù),選項錯誤;B、是分數(shù),是有理數(shù),選項錯誤;C、0是整數(shù),是有理數(shù),選項錯誤;D、π是無理數(shù),選項正確.故選D.【點睛】此題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學習的無理數(shù)有:π,2π等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).9、D【解析】

根據(jù)已知條件中的數(shù)據(jù)計算出甲、乙的方差,中位數(shù)和眾數(shù)后,再進行比較即可.【詳解】把甲命中的環(huán)數(shù)按大小順序排列為:6,6,7,8,8,故中位數(shù)為7;把乙命中的環(huán)數(shù)按大小順序排列為:5,6,7,7,10,故中位數(shù)為7;∴甲、乙成績的中位數(shù)相同,故選項B錯誤;根據(jù)表格中數(shù)據(jù)可知,甲的眾數(shù)是8環(huán),乙的眾數(shù)是7環(huán),∴甲、乙成績的眾數(shù)不同,故選項C錯誤;甲命中的環(huán)數(shù)的平均數(shù)為:x甲乙命中的環(huán)數(shù)的平均數(shù)為:x乙∴甲的平均數(shù)等于乙的平均數(shù),故選項A錯誤;甲的方差S甲2=15[(6?7)2+(7?7)2+(8?7)2+(6?7)2乙的方差=15[(5?7)2+(10?7)2+(7?7)2+(6?7)2+(7?7)2因為2.8>0.8,所以甲的穩(wěn)定性大,故選項D正確.故選D.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.同時還考查了眾數(shù)的中位數(shù)的求法.10、C【解析】

直接利用概率的意義以及隨機事件的定義分別分析得出答案.【詳解】A、任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上,錯誤;B、天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨,錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確;D、“a是實數(shù),|a|≥0”是必然事件,故此選項錯誤.故選C.【點睛】此題主要考查了概率的意義以及隨機事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.11、C【解析】

根據(jù)比較實數(shù)大小的方法進行比較即可.根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【詳解】因為正數(shù)大于負數(shù),兩個負數(shù)比較大小,絕對值較大的數(shù)反而較小,所以-2<-2所以最小的數(shù)是-2,故選C.【點睛】此題主要考查了實數(shù)的大小的比較,正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而?。?2、C【解析】

根據(jù)平行線分線段成比例定理和相似三角形的性質(zhì)找準線段的對應關(guān)系,對各選項分析判斷.【詳解】A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本選項錯誤;B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本選項錯誤;C、∵EF∥CD,DE∥BC,∴,,∴,故本選項正確;D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本選項錯誤.故選C.【點睛】本題考查了平行線分線段成比例的運用及平行于三角形一邊的直線截其它兩邊,所得的新三角形與原三角形相似的定理的運用,在解答時尋找對應線段是關(guān)健.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、35°【解析】試題分析:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案為35°.考點:圓周角定理.14、【解析】

此題有等腰三角形,所以可作BH⊥CD,交EC于點G,利用三線合一性質(zhì)及鄰補角互補可得∠BGD=120°,根據(jù)四邊形內(nèi)角和360°,得到∠ABG+∠ADG=180°.此時再延長GB至K,使AK=AG,構(gòu)造出等邊△AGK.易證△ABK≌△ADG,從而說明△ABD是等邊三角形,BD=AB=,根據(jù)DG、CG、GH線段之間的關(guān)系求出CG長度,在Rt△DBH中利用勾股定理及三角函數(shù)知識得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG長度,最后CE=CG+GE求解.【詳解】如圖,作于H,交AC于點G,連接DG.∵,∴BH垂直平分CD,∴,∴,∴,∴,延長GB至K,連接AK使,則是等邊三角形,∴,又,∴≌(),∴,∴是等邊三角形,∴,設(shè),則,,∴,∴,在中,,解得,,當時,,所以,∴,,,作,設(shè),,,,,∴,,∴,則,故答案為【點睛】本題主要考查了等腰三角形的性質(zhì)及等邊三角形、全等三角形的判定和性質(zhì)以及勾股定理的運用,綜合性較強,正確作出輔助線是解題的關(guān)鍵.15、50【解析】

由CD是⊙O的直徑,弦AB⊥CD,根據(jù)垂徑定理的即可求得

=,又由圓周角定理,可得∠AOD=50°.【詳解】∵CD是⊙O的直徑,弦AB⊥CD,

∴=,

∵∠BCD=25°=,

∴∠AOD=2∠BCD=50°,

故答案為50【點睛】本題考查角度的求解,解題的關(guān)鍵是利用垂徑定理.16、π【解析】

作PD⊥BC,則點P運動的路徑長是以點D為圓心,以PD為半徑,圓心角為60°的一段圓弧,根據(jù)相似三角形的判定與性質(zhì)求出PD的長,然后根據(jù)弧長公式求解即可.【詳解】作PD⊥BC,則PD∥AC,∴△PBD~△ABC,∴PDAC∵AC=3,BC=4,∴AB=32∵AP=2BP,∴BP=13∴PD=5∴點P運動的路徑長=60π×1180故答案為:π3【點睛】本題考查了相似三角形的判定與性質(zhì),弧長的計算,根據(jù)相似三角形的判定與性質(zhì)求出PD的長是解答本題的關(guān)鍵.17、13【解析】

根據(jù)同時同地物高與影長成比列式計算即可得解.【詳解】解:設(shè)旗桿高度為x米,由題意得,,解得x=13.故答案為13.【點睛】本題考查投影,解題的關(guān)鍵是應用相似三角形.18、【解析】試題分析:根據(jù)“5頭牛,2只羊,值金10兩;2頭牛、5只羊,值金8兩.”列方程組即可.考點:二元一次方程組的應用三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2);拓展:【解析】

(1)由題意得BD=CE,得出BE=CD,證出AB=AC,由SAS證明△ABE≌△ACD即可;(2)由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠BEA=∠EAB=70°,證出AC=CD,由等腰三角形的性質(zhì)得出∠ADC=∠DAC=70°,即可得出∠DAE的度數(shù);拓展:對△ABD的外心位置進行推理,即可得出結(jié)論.【詳解】(1)證明:∵點D、點E分別從點B、點C同時出發(fā),在線段BC上作等速運動,∴BD=CE,∴BC-BD=BC-CE,即BE=CD,∵∠B=∠C=40°,∴AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);(2)解:∵∠B=∠C=40°,AB=BE,∴∠BEA=∠EAB=(180°-40°)=70°,∵BE=CD,AB=AC,∴AC=CD,∴∠ADC=∠DAC=(180°-40°)=70°,∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;拓展:解:若△ABD的外心在其內(nèi)部時,則△ABD是銳角三角形.∴∠BAD=140°-∠BDA<90°.∴∠BDA>50°,又∵∠BDA<90°,∴50°<∠BDA<90°.【點睛】本題考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理、三角形的外心等知識;熟練掌握等腰三角形的性質(zhì)是解題的關(guān)鍵.20、(1)①y=-x2-4x-3;y=x;②t=或;(2)證明見解析.【解析】

(1)把A(-3,0),B(-1,0)代入二次函數(shù)解析式即可求出;由AC=OA知C點坐標為(-3,-3),故可求出直線OC的解析式;②由題意得OP=2t,P(-2t,0),過Q作QH⊥x軸于H,得OH=HQ=t,可得Q(-t,-t),直線PQ為y=-x-2t,過M作MG⊥x軸于G,由,則2PG=GH,由,得,于是,解得,從而求出M(-3t,t)或M(),再分情況計算即可;(2)過F作FH⊥x軸于H,想辦法證得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得證.【詳解】解:(1)①把A(-3,0),B(-1,0)代入二次函數(shù)解析式得解得∴y=-x2-4x-3;由AC=OA知C點坐標為(-3,-3),∴直線OC的解析式y(tǒng)=x;②OP=2t,P(-2t,0),過Q作QH⊥x軸于H,∵QO=,∴OH=HQ=t,∴Q(-t,-t),∴PQ:y=-x-2t,過M作MG⊥x軸于G,∴,∴2PG=GH∴,即,∴,∴,∴M(-3t,t)或M()當M(-3t,t)時:,∴當M()時:,∴綜上:或(2)設(shè)A(m,0)、B(n,0),∴m、n為方程x2-bx-c=0的兩根,∴m+n=b,mn=-c,∴y=-x2+(m+n)x-mn=-(x-m)(x-n),∵E、F在拋物線上,設(shè)、,設(shè)EF:y=kx+b,∴,∴∴∴,令x=m∴=∴AC=,又∵,∴tan∠CAG=,另一方面:過F作FH⊥x軸于H,∴,,∴tan∠FBH=∴tan∠CAG=tan∠FBH∴∠CAG=∠FBH∴CG∥BF【點睛】此題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是熟知相似三角形的判定與性質(zhì)及正確作出輔助線進行求解.21、(1)16人;(2)工中位數(shù)是1700元;眾數(shù)是1600元;(3)用1700元或1600元來介紹更合理些.(4)能反映該公司員工的月工資實際水平.【解析】

(1)用總?cè)藬?shù)50減去其它部門的人數(shù);(2)根據(jù)中位數(shù)和眾數(shù)的定義求解即可;(3)由平均數(shù)、眾數(shù)、中位數(shù)的特征可知,平均數(shù)易受極端數(shù)據(jù)的影響,用眾數(shù)和中位數(shù)映該公司員工的月工資實際水平更合適些;(4)去掉極端數(shù)據(jù)后平均數(shù)可以反映該公司員工的月工資實際水平.【詳解】(1)該公司“高級技工”的人數(shù)=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工資數(shù)從小到大排列,第25和第26分別是:1600元和1800元,因而中位數(shù)是1700元;在這些數(shù)中1600元出現(xiàn)的次數(shù)最多,因而眾數(shù)是1600元;(3)這個經(jīng)理的介紹不能反映該公司員工的月工資實際水平.用1700元或1600元來介紹更合理些.(4)(元).能反映該公司員工的月工資實際水平.22、原計劃每天種樹40棵.【解析】

設(shè)原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,根據(jù)實際完成的天數(shù)比計劃少5天為等量關(guān)系建立方程求出其解即可.【詳解】設(shè)原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,由題意,得?=5,解得:x=40,經(jīng)檢驗,x=40是原方程的解.答:原計劃每天種樹40棵.23、(1)(2).【解析】

(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.24、小時【解析】

過點C作CD⊥AB交AB延長線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論