版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省鄱陽縣2023-2024學年中考數(shù)學模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.關于的敘述正確的是()A.= B.在數(shù)軸上不存在表示的點C.=± D.與最接近的整數(shù)是32.“趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數(shù)學的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.63.某廠進行技術創(chuàng)新,現(xiàn)在每天比原來多生產30臺機器,并且現(xiàn)在生產500臺機器所需時間與原來生產350臺機器所需時間相同.設現(xiàn)在每天生產x臺機器,根據(jù)題意可得方程為()A. B. C. D.4.下列二次根式中,最簡二次根式的是()A. B. C. D.5.函數(shù)y=ax+b與y=bx+a的圖象在同一坐標系內的大致位置是()A. B.C. D.6.下列計算正確的是()A.x2x3=x6 B.(m+3)2=m2+9C.a10÷a5=a5 D.(xy2)3=xy67.一條數(shù)學信息在一周內被轉發(fā)了2180000次,將數(shù)據(jù)2180000用科學記數(shù)法表示為()A.2.18×106B.2.18×105C.21.8×106D.21.8×1058.某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結果的實驗最有可能的是()A.袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球B.擲一枚質地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)C.先后兩次擲一枚質地均勻的硬幣,兩次都出現(xiàn)反面D.先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過99.﹣2的絕對值是()A.2 B. C. D.10.已知x=2是關于x的一元二次方程x2﹣x﹣2a=0的一個解,則a的值為()A.0 B.﹣1 C.1 D.211.下列計算正確的有()個①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.312.在一些美術字中,有的漢字是軸對稱圖形.下面4個漢字中,可以看作是軸對稱圖形的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,學校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知DE⊥EA,斜坡CD的長度為30m,DE的長為15m,則樹AB的高度是_____m.14.如圖,點D是線段AB的中點,點C是線段AD的中點,若CD=1,則AB=________________.15.如圖,點A1,B1,C1,D1,E1,F(xiàn)1分別是正六邊形ABCDEF六條邊的中點,連接AB1,BC1,CD1,DE1,EF1,F(xiàn)A1后得到六邊形GHIJKL,則S六邊形GHIJKI:S六邊形ABCDEF的值為____.16.意大利著名數(shù)學家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,請根據(jù)這組數(shù)的規(guī)律寫出第10個數(shù)是______.17.已知三角形兩邊的長分別為1、5,第三邊長為整數(shù),則第三邊的長為_____.18.如圖,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于點C,若OC=6,則AB的長等于__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.
如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設運動時間為x(s),F(xiàn)G的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).
(1)當x為何值時,OP∥AC;
(2)求y與x之間的函數(shù)關系式,并確定自變量x的取值范圍;
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)20.(6分)如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,且BF是⊙O的切線,BF交AC的延長線于F.(1)求證:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的長.21.(6分)在矩形中,點在上,,⊥,垂足為.求證.若,且,求.22.(8分)如圖,四邊形ABCD內接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.(1)求證:DE是⊙O的切線;(2)若AC∥DE,當AB=8,CE=2時,求AC的長.23.(8分)如圖,已知∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE與BD相交于點O.求證:EC=ED.24.(10分)在“植樹節(jié)”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學校植樹活動,規(guī)則如下:在兩個盒子內分別裝入標有數(shù)字1,2,3,4的四個和標有數(shù)字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數(shù)字之和小于5,那么小王去,否則就是小李去.(1)用樹狀圖或列表法求出小王去的概率;(2)小李說:“這種規(guī)則不公平”,你認同他的說法嗎?請說明理由.25.(10分)在△ABC中,AB=AC,∠BAC=α,點P是△ABC內一點,且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關系.(1)當α=60°時,將△ABP繞點A逆時針旋轉60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關系為;(2)如圖2,當α=120°時,參考(1)中的方法,探究PA、PB、PC滿足的等量關系,并給出證明;(3)PA、PB、PC滿足的等量關系為.26.(12分)(1)如圖1,正方形ABCD中,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點G,求證:AE=BF;(2)如圖2,矩形ABCD中,AB=2,BC=3,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點M,探究AE與BF的數(shù)量關系,并證明你的結論;(3)在(2)的基礎上,若AB=m,BC=n,其他條件不變,請直接寫出AE與BF的數(shù)量關系;.27.(12分)計算:﹣(﹣2)2+|﹣3|﹣20180×
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應的關系、二次根式的化簡及無理數(shù)的估算對各項依次分析,即可解答.【詳解】選項A,+無法計算;選項B,在數(shù)軸上存在表示的點;選項C,;選項D,與最接近的整數(shù)是=1.故選D.【點睛】本題考查了二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應的關系、二次根式的化簡及無理數(shù)的估算等知識點,熟記這些知識點是解題的關鍵.2、C【解析】
如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,2ab=21﹣13=8,∴小正方形的面積為13﹣8=1.故選C.考點:勾股定理的證明.3、A【解析】
根據(jù)現(xiàn)在生產500臺機器所需時間與原計劃生產350臺機器所需時間相同,所以可得等量關系為:現(xiàn)在生產500臺機器所需時間=原計劃生產350臺機器所需時間.【詳解】現(xiàn)在每天生產x臺機器,則原計劃每天生產(x﹣30)臺機器.依題意得:,故選A.【點睛】本題考查了分式方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.4、C【解析】
判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、=,被開方數(shù)含分母,不是最簡二次根式;故A選項錯誤;B、=,被開方數(shù)為小數(shù),不是最簡二次根式;故B選項錯誤;C、,是最簡二次根式;故C選項正確;D.=,被開方數(shù),含能開得盡方的因數(shù)或因式,故D選項錯誤;故選C.考點:最簡二次根式.5、B【解析】
根據(jù)a、b的符號進行判斷,兩函數(shù)圖象能共存于同一坐標系的即為正確答案.【詳解】分四種情況:①當a>0,b>0時,y=ax+b的圖象經過第一、二、三象限,y=bx+a的圖象經過第一、二、三象限,無選項符合;②當a>0,b<0時,y=ax+b的圖象經過第一、三、四象限;y=bx+a的圖象經過第一、二、四象限,B選項符合;③當a<0,b>0時,y=ax+b的圖象經過第一、二、四象限;y=bx+a的圖象經過第一、三、四象限,B選項符合;④當a<0,b<0時,y=ax+b的圖象經過第二、三、四象限;y=bx+a的圖象經過第二、三、四象限,無選項符合.故選B.【點睛】此題考查一次函數(shù)的圖象,關鍵是根據(jù)一次函數(shù)y=kx+b的圖象有四種情況:①當k>0,b>0,函數(shù)y=kx+b的圖象經過第一、二、三象限;②當k>0,b<0,函數(shù)y=kx+b的圖象經過第一、三、四象限;③當k<0,b>0時,函數(shù)y=kx+b的圖象經過第一、二、四象限;④當k<0,b<0時,函數(shù)y=kx+b的圖象經過第二、三、四象限.6、C【解析】
根據(jù)乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方進行計算即可得到答案.【詳解】x2?x3=x5,故選項A不合題意;(m+3)2=m2+6m+9,故選項B不合題意;a10÷a5=a5,故選項C符合題意;(xy2)3=x3y6,故選項D不合題意.故選:C.【點睛】本題考查乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方解題的關鍵是掌握乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方的運算.7、A【解析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】2180000的小數(shù)點向左移動6位得到2.18,所以2180000用科學記數(shù)法表示為2.18×106,故選A.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.8、D【解析】
根據(jù)統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:根據(jù)統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,A、袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球的概率為,不符合題意;B、擲一枚質地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)的概率為,不符合題意;C、先后兩次擲一枚質地均勻的硬幣,兩次都出現(xiàn)反面的概率為,不符合題意;D、先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9的概率為,符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、A【解析】分析:根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點﹣2到原點的距離是2,所以﹣2的絕對值是2,故選A.10、C【解析】試題分析:把方程的解代入方程,可以求出字母系數(shù)a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本題選C.【考點】一元二次方程的解;一元二次方程的定義.11、C【解析】
根據(jù)積的乘方法則,多項式乘多項式的計算法則,完全平方公式,合并同類項的計算法則,乘方的定義計算即可求解.【詳解】①(﹣2a2)3=﹣8a6,錯誤;②(x﹣2)(x+3)=x2+x﹣6,錯誤;③(x﹣2)2=x2﹣4x+4,錯誤④﹣2m3+m3=﹣m3,正確;⑤﹣16=﹣1,正確.計算正確的有2個.故選C.【點睛】考查了積的乘方,多項式乘多項式,完全平方公式,合并同類項,乘方,關鍵是熟練掌握計算法則正確進行計算.12、A【解析】
根據(jù)軸對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形;B、不是軸對稱圖形;C、不是軸對稱圖形;D、不是軸對稱圖形.故選:A.【點睛】本題考查的是軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
先根據(jù)CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由銳角三角函數(shù)的定義即可得出結論.【詳解】解:作DF⊥AB于F,交BC于G.則四邊形DEAF是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=1(m),故答案為1.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題,熟記銳角三角函數(shù)的定義是解答此題的關鍵.14、4【解析】∵點C是線段AD的中點,若CD=1,∴AD=1×2=2,∵點D是線段AB的中點,∴AB=2×2=4,故答案為4.15、.【解析】
設正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a.求出正六邊形的邊長,根據(jù)S六邊形GHIJKI:S六邊形ABCDEF=()2,計算即可;【詳解】設正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a,作A1M⊥FA交FA的延長線于M,在Rt△AMA1中,∵∠MAA1=60°,∴∠MA1A=30°,∴AM=AA1=a,∴MA1=AA1·cos30°=a,F(xiàn)M=5a,在Rt△A1FM中,F(xiàn)A1=,∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,∴△F1FL∽△A1FA,∴,∴,∴FL=a,F(xiàn)1L=a,根據(jù)對稱性可知:GA1=F1L=a,∴GL=2a﹣a=a,∴S六邊形GHIJKI:S六邊形ABCDEF=()2=,故答案為:.【點睛】本題考查正六邊形與圓,解直角三角形,勾股定理,相似三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會利用參數(shù)解決問題.16、1【解析】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以發(fā)現(xiàn):從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.則第8個數(shù)為13+8=21;第9個數(shù)為21+13=34;第10個數(shù)為34+21=1.故答案為1.點睛:此題考查了數(shù)字的有規(guī)律變化,解答此類題目的關鍵是要求學生通對題目中給出的圖表、數(shù)據(jù)等認真進行分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應用規(guī)律解決問題.此類題目難度一般偏大.17、2【解析】分析:根據(jù)三角形的三邊關系“任意兩邊之和>第三邊,任意兩邊之差<第三邊”,求得第三邊的取值范圍,再進一步根據(jù)第三邊是整數(shù)求解.詳解:根據(jù)三角形的三邊關系,得第三邊>4,而<1.又第三條邊長為整數(shù),則第三邊是2.點睛:此題主要是考查了三角形的三邊關系,同時注意整數(shù)這一條件.18、18【解析】連接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案為18.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【解析】
(1)由于O是EF中點,因此當P為FG中點時,OP∥EG∥AC,據(jù)此可求出x的值.(2)由于四邊形AHPO形狀不規(guī)則,可根據(jù)三角形AFH和三角形OPF的面積差來得出四邊形AHPO的面積.三角形AHF中,AH的長可用AF的長和∠FAH的余弦值求出,同理可求出FH的表達式(也可用相似三角形來得出AH、FH的長).三角形OFP中,可過O作OD⊥FP于D,PF的長易知,而OD的長,可根據(jù)OF的長和∠FOD的余弦值得出.由此可求得y、x的函數(shù)關系式.(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數(shù)式中即可得出x的值.【詳解】解:(1)∵Rt△EFG∽Rt△ABC∴,即,∴FG==3cm∵當P為FG的中點時,OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴當x為1.5s時,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),F(xiàn)H=(x+5)過點O作OD⊥FP,垂足為D∵點O為EF中點∴OD=EG=2cm∵FP=3﹣x∴S四邊形OAHP=S△AFH﹣S△OFP=?AH?FH﹣?OD?FP=?(x+5)?(x+5)﹣×2×(3﹣x)=x2+x+3(0<x<3).(3)假設存在某一時刻x,使得四邊形OAHP面積與△ABC面積的比為13:1則S四邊形OAHP=×S△ABC∴x2+x+3=××6×8∴6x2+85x﹣250=0解得x1=,x2=﹣(舍去)∵0<x<3∴當x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【點睛】本題是比較常規(guī)的動態(tài)幾何壓軸題,第1小題運用相似形的知識容易解決,第2小題同樣是用相似三角形建立起函數(shù)解析式,要說的是本題中說明了要寫出自變量x的取值范圍,而很多試題往往不寫,要記住自變量x的取值范圍是函數(shù)解析式不可分離的一部分,無論命題者是否交待了都必須寫,第3小題只要根據(jù)函數(shù)解析式列個方程就能解決.20、(1)證明略;(2)BC=,BF=.【解析】試題分析:(1)連結AE.有AB是⊙O的直徑可得∠AEB=90°再有BF是⊙O的切線可得BF⊥AB,利用同角的余角相等即可證明;(2)在Rt△ABE中有三角函數(shù)可以求出BE,又有等腰三角形的三線合一可得BC=2BE,過點C作CG⊥AB于點G.可求出AE,再在Rt△ABE中,求出sin∠2,cos∠2.然后再在Rt△CGB中求出CG,最后證出△AGC∽△ABF有相似的性質求出BF即可.試題解析:(1)證明:連結AE.∵AB是⊙O的直徑,∴∠AEB=90°,∴∠1+∠2=90°.∵BF是⊙O的切線,∴BF⊥AB,∴∠CBF+∠2=90°.∴∠CBF=∠1.∵AB=AC,∠AEB=90°,∴∠1=∠CAB.∴∠CBF=∠CAB.(2)解:過點C作CG⊥AB于點G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=.∵∠AEB=90°,AB=5.∴BE=AB·sin∠1=.∵AB=AC,∠AEB=90°,∴BC=2BE=.在Rt△ABE中,由勾股定理得.∴sin∠2=,cos∠2=.在Rt△CBG中,可求得GC=4,GB=2.∴AG=3.∵GC∥BF,∴△AGC∽△ABF.∴,∴.考點:切線的性質,相似的性質,勾股定理.21、(1)證明見解析;(2)1【解析】分析:(1)利用“AAS”證△ADF≌△EAB即可得;(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,據(jù)此知AD=2DF,根據(jù)DF=AB可得答案.詳解:(1)證明:在矩形ABCD中,∵AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DFA=90°,∴∠DFA=∠B,又∵AD=EA,∴△ADF≌△EAB,∴DF=AB.(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF,∵DF=AB,∴AD=2AB=1.點睛:本題主要考查矩形的性質,解題的關鍵是掌握矩形的性質和全等三角形的判定與性質及直角三角形的性質.22、(1)證明見解析;(2)AC的長為.【解析】
(1)先判斷出BD是圓O的直徑,再判斷出BD⊥DE,即可得出結論;(2)先判斷出AC⊥BD,進而求出BC=AB=8,進而判斷出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判斷出△CFD∽△BCD,即可得出結論.【詳解】(1)如圖,連接BD,∵∠BAD=90°,∴點O必在BD上,即:BD是直徑,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵點D在⊙O上,∴DE是⊙O的切線;(2)∵DE∥AC.∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD.∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=1.在Rt△BCD中,BD==1,同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2C=.【點睛】考查了圓周角定理,垂徑定理,相似三角形的判定和性質,切線的判定和性質,勾股定理,求出BC=8是解本題的關鍵.23、見解析【解析】
由∠1=∠2,可得∠BED=∠AEC,根據(jù)利用ASA可判定△BED≌△AEC,然后根據(jù)全等三角形的性質即可得證.【詳解】解:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED,即∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(ASA),∴ED=EC.【點睛】本題主要考查全等三角形的判定和性質,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(即全等三角形的對應邊相等、對應角相等)是解題的關鍵.24、(1);(2)規(guī)則是公平的;【解析】試題分析:(1)先利用畫樹狀圖展示所有12種等可能的結果數(shù),然后根據(jù)概率公式求解即可;(2)分別計算出小王和小李去植樹的概率即可知道規(guī)則是否公平.試題解析:(1)畫樹狀圖為:共有12種等可能的結果數(shù),其中摸出的球上的數(shù)字之和小于6的情況有9種,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴規(guī)則不公平.點睛:本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.25、(1)150,(1)證明見解析(3)【解析】
(1)根據(jù)旋轉變換的性質得到△PAP′為等邊三角形,得到∠P′PC=90°,根據(jù)勾股定理解答即可;(1)如圖1,作將△ABP繞點A逆時針旋轉110°得到△ACP′,連接PP′,作AD⊥PP′于D,根據(jù)余弦的定義得到PP′=PA,根據(jù)勾股定理解答即可;(3)與(1)類似,根據(jù)旋轉變換的性質、勾股定理和余弦、正弦的關系計算即可.試題解析:【詳解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋轉變換的性質可知,∠PAP′=60°,P′C=PB,∴△PAP′為等邊三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案為150,PA1+PC1=PB1;(1)如圖,作°,使,連接,.過點A作AD⊥于D點.∵°,即,∴.∵AB=AC,,∴.∴,°.∵AD⊥,∴°.∴在Rt中,.∴.∵°,∴°.∴°.∴在Rt中,.∴;(3)如圖1,與(1)的方法類似,作將△ABP繞點A逆時針旋轉α得到△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度養(yǎng)老機構蟲鼠害防治與老人健康保障合同4篇
- 2025年度智能機器人研發(fā)項目代理采購合同4篇
- 2025年度餐飲加盟店選址與評估咨詢合同3篇
- 二零二五年度通訊工程破樁勞務分包合同3篇
- 二零二五年度高新技術成果轉化合同模板3篇
- 2025年度智能打包機研發(fā)與生產合同3篇
- 2025版智慧醫(yī)療項目投資股東協(xié)議3篇
- 科技產品開發(fā)中的創(chuàng)新思維應用
- 2025年度金融科技公司Oracle金融科技平臺定制合同3篇
- 2025年度智能停車解決方案車位銷售與服務協(xié)議4篇
- 醫(yī)院三基考核試題(康復理療科)
- 2024-2030年中國招標代理行業(yè)深度分析及發(fā)展前景與發(fā)展戰(zhàn)略研究報告
- 醫(yī)師定期考核 (公共衛(wèi)生)試題庫500題(含答案)
- 基因突變和基因重組(第1課時)高一下學期生物人教版(2019)必修2
- 內科學(醫(yī)學高級):風濕性疾病試題及答案(強化練習)
- 音樂劇好看智慧樹知到期末考試答案2024年
- 辦公設備(電腦、一體機、投影機等)采購 投標方案(技術方案)
- 案卷評查培訓課件模板
- 2024年江蘇省樣卷五年級數(shù)學上冊期末試卷及答案
- 人教版初中英語七八九全部單詞(打印版)
- 波浪理論要點圖解完美版
評論
0/150
提交評論