【首發(fā)】內(nèi)蒙古通遼市開魯2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
【首發(fā)】內(nèi)蒙古通遼市開魯2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
【首發(fā)】內(nèi)蒙古通遼市開魯2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
【首發(fā)】內(nèi)蒙古通遼市開魯2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
【首發(fā)】內(nèi)蒙古通遼市開魯2024年中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

【首發(fā)】內(nèi)蒙古通遼市開魯2024年中考聯(lián)考數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F(xiàn)分別是CD,AD上的點,且CE=AF.如果∠AED=62°,那么∠DBF的度數(shù)為()A.62° B.38° C.28° D.26°2.計算的值為()A. B.-4 C. D.-23.如圖1,在△ABC中,AB=BC,AC=m,D,E分別是AB,BC邊的中點,點P為AC邊上的一個動點,連接PD,PB,PE.設(shè)AP=x,圖1中某條線段長為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是()A.PD B.PB C.PE D.PC4.已知一組數(shù)據(jù)1、2、3、x、5,它們的平均數(shù)是3,則這一組數(shù)據(jù)的方差為()A.1 B.2 C.3 D.45.若是關(guān)于x的方程的一個根,則方程的另一個根是()A.9 B.4 C.4 D.36.如圖,AB∥CD,DB⊥BC,∠2=50°,則∠1的度數(shù)是()A.40° B.50° C.60° D.140°7.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x>0 B.x≥0 C.x≠0 D.任意實數(shù)8.-5的相反數(shù)是()A.5 B. C. D.9.在△ABC中,若=0,則∠C的度數(shù)是()A.45° B.60° C.75° D.105°10.如圖所示,在平面直角坐標(biāo)系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點C順時針旋轉(zhuǎn)180°,得到△CP3D,依此類推,則旋轉(zhuǎn)第2017次后,得到的等腰直角三角形的直角頂點P2018的坐標(biāo)為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)11.若代數(shù)式2x2+3x﹣1的值為1,則代數(shù)式4x2+6x﹣1的值為()A.﹣3 B.﹣1 C.1 D.312.如圖,在中,,,,點分別在上,于,則的面積為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在等腰△ABC中,AB=AC,BC邊上的高AD=6cm,腰AB上的高CE=8cm,則BC=_____cm14.如圖,直線a∥b,∠BAC的頂點A在直線a上,且∠BAC=100°.若∠1=34°,則∠2=_____°.15.如圖,正五邊形ABCDE放入某平面直角坐標(biāo)系后,若頂點A,B,C,D的坐標(biāo)分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標(biāo)是_____.16.如圖,小量角器的零度線在大量角器的零度線上,且小量角器的中心在大量角器的外緣邊上.如果它們外緣邊上的公共點P在小量角器上對應(yīng)的度數(shù)為65°,那么在大量角器上對應(yīng)的度數(shù)為_____度(只需寫出0°~90°的角度).17.如圖,在矩形ABCD中,AB=3,BC=5,在CD上任取一點E,連接BE,將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,則CE的長為_____.18.在平面直角坐標(biāo)系xOy中,將拋物線y=3(x+2)2-1平移后得到拋物線y=3x2+2.請你寫出一種平移方法.答:________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)解方程:x2-4x-5=020.(6分)如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標(biāo)為(-3,0).(1)求點B的坐標(biāo);(2)已知,C為拋物線與y軸的交點.①若點P在拋物線上,且,求點P的坐標(biāo);②設(shè)點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.21.(6分)(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)22.(8分)工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)求長方體底面面積為12dm2時,裁掉的正方形邊長多大?23.(8分)已知:如圖,梯形ABCD中,AD∥BC,DE∥AB,與對角線交于點,∥,且FG=EF.(1)求證:四邊形是菱形;(2)聯(lián)結(jié)AE,又知AC⊥ED,求證:.24.(10分)觀察下列算式:①1×3-22="3"-4=-1②2×4-32="8"-9=-1③3×5-42="15"-16=-1④……(1)請你按以上規(guī)律寫出第4個算式;(2)把這個規(guī)律用含字母的式子表示出來;(3)你認(rèn)為(2)中所寫出的式子一定成立嗎?并說明理由.25.(10分)試探究:小張在數(shù)學(xué)實踐活動中,畫了一個△ABC,∠ACB=90°,BC=1,AC=2,再以點B為圓心,BC為半徑畫弧交AB于點D,然后以A為圓心,AD長為半徑畫弧交AC于點E,如圖1,則AE=;此時小張發(fā)現(xiàn)AE2=AC?EC,請同學(xué)們驗證小張的發(fā)現(xiàn)是否正確.拓展延伸:小張利用圖1中的線段AC及點E,構(gòu)造AE=EF=FC,連接AF,得到圖2,試完成以下問題:(1)求證:△ACF∽△FCE;(2)求∠A的度數(shù);(3)求cos∠A的值;應(yīng)用遷移:利用上面的結(jié)論,求半徑為2的圓內(nèi)接正十邊形的邊長.26.(12分)計算:(π﹣1)0+|﹣1|﹣÷+(﹣1)﹣1.27.(12分)如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)實踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡.①作∠ABC的角平分線交AC于點D.②作線段BD的垂直平分線,交AB于點E,交BC于點F,連接DE、DF.(2)推理計算:四邊形BFDE的面積為.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質(zhì).注意:根據(jù)斜邊和直角邊對應(yīng)相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點睛:熟練運用等腰直角三角形三線合一性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關(guān)鍵.2、C【解析】

根據(jù)二次根式的運算法則即可求出答案.【詳解】原式=-3=-2,故選C.【點睛】本題考查二次根式的運算,解題的關(guān)鍵是熟練運用二次根式的運算法則,本題屬于基礎(chǔ)題型.3、C【解析】觀察可得,點P在線段AC上由A到C的運動中,線段PE逐漸變短,當(dāng)EP⊥AC時,PE最短,過垂直這個點后,PE又逐漸變長,當(dāng)AP=m時,點P停止運動,符合圖像的只有線段PE,故選C.點睛:本題考查了動點問題的函數(shù)圖象,對于此類問題來說是典型的數(shù)形結(jié)合,圖象應(yīng)用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.4、B【解析】

先由平均數(shù)是3可得x的值,再結(jié)合方差公式計算.【詳解】∵數(shù)據(jù)1、2、3、x、5的平均數(shù)是3,∴=3,解得:x=4,則數(shù)據(jù)為1、2、3、4、5,∴方差為×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故選B.【點睛】本題主要考查算術(shù)平均數(shù)和方差,解題的關(guān)鍵是熟練掌握平均數(shù)和方差的定義.5、D【解析】

解:設(shè)方程的另一個根為a,由一元二次方程根與系數(shù)的故選可得,解得a=,故選D.6、A【解析】試題分析:根據(jù)直角三角形兩銳角互余求出∠3,再根據(jù)兩直線平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故選A.7、C【解析】

根據(jù)分式和二次根式有意義的條件進行解答.【詳解】解:依題意得:x2≥1且x≠1.解得x≠1.故選C.【點睛】考查了分式有意義的條件和二次根式有意義的條件.解題時,注意分母不等于零且被開方數(shù)是非負(fù)數(shù).8、A【解析】由相反數(shù)的定義:“只有符號不同的兩個數(shù)互為相反數(shù)”可知-5的相反數(shù)是5.故選A.9、C【解析】

根據(jù)非負(fù)數(shù)的性質(zhì)可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】由題意,得

cosA=,tanB=1,

∴∠A=60°,∠B=45°,

∴∠C=180°-∠A-∠B=180°-60°-45°=75°.

故選C.10、D【解析】

根據(jù)題意可以求得P1,點P2,點P3的坐標(biāo),從而可以發(fā)現(xiàn)其中的變化的規(guī)律,從而可以求得P2018的坐標(biāo),本題得以解決.【詳解】解:由題意可得,

點P1(1,1),點P2(3,-1),點P3(5,1),

∴P2018的橫坐標(biāo)為:2×2018-1=4035,縱坐標(biāo)為:-1,

即P2018的坐標(biāo)為(4035,-1),

故選:D.【點睛】本題考查了點的坐標(biāo)變化規(guī)律,解答本題的關(guān)鍵是發(fā)現(xiàn)各點的變化規(guī)律,求出相應(yīng)的點的坐標(biāo).11、D【解析】

由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1計算可得.【詳解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,則4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本題答案為:D.【點睛】本題主要考查代數(shù)式的求值,運用整體代入的思想是解題的關(guān)鍵.12、C【解析】

先利用三角函數(shù)求出BE=4m,同(1)的方法判斷出∠1=∠3,進而得出△ACQ∽△CEP,得出比例式求出PE,最后用面積的差即可得出結(jié)論;【詳解】∵,

∴CQ=4m,BP=5m,

在Rt△ABC中,sinB=,tanB=,

如圖2,過點P作PE⊥BC于E,

在Rt△BPE中,PE=BP?sinB=5m×=3m,tanB=,

∴,

∴BE=4m,CE=BC-BE=8-4m,

同(1)的方法得,∠1=∠3,

∵∠ACQ=∠CEP,

∴△ACQ∽△CEP,

∴,∴,

∴m=,

∴PE=3m=,

∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故選C.【點睛】本題是相似形綜合題,主要考查了相似三角形的判定和性質(zhì),三角形的面積的計算方法,判斷出△ACQ∽△CEP是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據(jù)三角形的面積公式求出=,根據(jù)等腰三角形的性質(zhì)得到BD=DC=BC,根據(jù)勾股定理列式計算即可.【詳解】∵AD是BC邊上的高,CE是AB邊上的高,∴AB?CE=BC?AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2?BD2=AD2,∴AB2=BC2+36,即BC2=BC2+36,解得:BC=.故答案為:.【點睛】本題考查的是等腰三角形的性質(zhì)、勾股定理的應(yīng)用和三角形面積公式的應(yīng)用,根據(jù)三角形的面積公式求出腰與底的比是解題的關(guān)14、46【解析】試卷分析:根據(jù)平行線的性質(zhì)和平角的定義即可得到結(jié)論.解:∵直線a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°?34°?100°=46°,故答案為46°.15、(3,2).【解析】

根據(jù)題意得出y軸位置,進而利用正多邊形的性質(zhì)得出E點坐標(biāo).【詳解】解:如圖所示:∵A(0,a),∴點A在y軸上,∵C,D的坐標(biāo)分別是(b,m),(c,m),∴B,E點關(guān)于y軸對稱,∵B的坐標(biāo)是:(﹣3,2),∴點E的坐標(biāo)是:(3,2).故答案為:(3,2).【點睛】此題主要考查了正多邊形和圓,正確得出y軸的位置是解題關(guān)鍵.16、1.【解析】

設(shè)大量角器的左端點是A,小量角器的圓心是B,連接AP,BP,則∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所對的圓心角是1°,因而P在大量角器上對應(yīng)的度數(shù)為1°.故答案為1.17、【解析】

設(shè)CE=x,由矩形的性質(zhì)得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折疊的性質(zhì)得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的長度,進而求出DF的長度;然后在Rt△DEF根據(jù)勾股定理列出關(guān)于x的方程即可解決問題.【詳解】設(shè)CE=x.∵四邊形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中,由勾股定理得:AF2=52-32=16,∴AF=4,DF=5-4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案為.18、答案不唯一【解析】分析:把y改寫成頂點式,進而解答即可.詳解:y先向右平移2個單位長度,再向上平移3個單位得到拋物線.故答案為y先向右平移2個單位長度,再向上平移3個單位得到拋物線.點睛:本題考查了二次函數(shù)圖象與幾何變換:先把二次函數(shù)的解析式配成頂點式為y=a(x-)2+,然后把拋物線的平移問題轉(zhuǎn)化為頂點的平移問題.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、x1="-1,"x2=5【解析】根據(jù)十字相乘法因式分解解方程即可.20、(1)點B的坐標(biāo)為(1,0).(2)①點P的坐標(biāo)為(4,21)或(-4,5).②線段QD長度的最大值為.【解析】

(1)由拋物線的對稱性直接得點B的坐標(biāo).(2)①用待定系數(shù)法求出拋物線的解析式,從而可得點C的坐標(biāo),得到,設(shè)出點P的坐標(biāo),根據(jù)列式求解即可求得點P的坐標(biāo).②用待定系數(shù)法求出直線AC的解析式,由點Q在線段AC上,可設(shè)點Q的坐標(biāo)為(q,-q-3),從而由QD⊥x軸交拋物線于點D,得點D的坐標(biāo)為(q,q2+2q-3),從而線段QD等于兩點縱坐標(biāo)之差,列出函數(shù)關(guān)系式應(yīng)用二次函數(shù)最值原理求解.【詳解】解:(1)∵A、B兩點關(guān)于對稱軸對稱,且A點的坐標(biāo)為(-3,0),∴點B的坐標(biāo)為(1,0).(2)①∵拋物線,對稱軸為,經(jīng)過點A(-3,0),∴,解得.∴拋物線的解析式為.∴B點的坐標(biāo)為(0,-3).∴OB=1,OC=3.∴.設(shè)點P的坐標(biāo)為(p,p2+2p-3),則.∵,∴,解得.當(dāng)時;當(dāng)時,,∴點P的坐標(biāo)為(4,21)或(-4,5).②設(shè)直線AC的解析式為,將點A,C的坐標(biāo)代入,得:,解得:.∴直線AC的解析式為.∵點Q在線段AC上,∴設(shè)點Q的坐標(biāo)為(q,-q-3).又∵QD⊥x軸交拋物線于點D,∴點D的坐標(biāo)為(q,q2+2q-3).∴.∵,∴線段QD長度的最大值為.21、見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;

應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,

∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.

∵∠A=∠F,

∴∠BCD=∠ECG.

∴∠BCD-∠ECD=∠ECG-∠ECD,

即∠BCE=∠DCG.

在△BCE和△DCG中,∴△BCE≌△DCG(SAS),

∴BE=DG.應(yīng)用:∵四邊形ABCD為菱形,

∴AD∥BC,

∵BE=DG,

∴S△ABE+S△CDE=S△BEC=S△CDG=8,

∵AE=3ED,∴S△CDE=,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.22、裁掉的正方形的邊長為2dm,底面積為12dm2.【解析】試題分析:設(shè)裁掉的正方形的邊長為xdm,則制作無蓋的長方體容器的長為(10-2x)dm,寬為(6-2x)dm,根據(jù)長方體底面面積為12dm2列出方程,解方程即可求得裁掉的正方形邊長.試題解析:設(shè)裁掉的正方形的邊長為xdm,由題意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的邊長為2dm,底面積為12dm2.23、(1)見解析;(2)見解析【解析】分析:(1)由兩組對邊分別平行的四邊形是平行四邊形,得到是平行四邊形.再由平行線分線段成比例定理得到:,,=,即可得到結(jié)論;(2)連接,與交于點.由菱形的性質(zhì)得到⊥,進而得到,,即有,得到△∽△,由相似三角形的性質(zhì)即可得到結(jié)論.詳解:(1)∵∥∥,∴四邊形是平行四邊形.∵∥,∴.同理.得:=∵,∴.∴四邊形是菱形.(2)連接,與交于點.∵四邊形是菱形,∴⊥.得.同理.∴.又∵是公共角,∴△∽△.∴.∴.點睛:本題主要考查了菱形的判定和性質(zhì)以及相似三角形的判定與性質(zhì).靈活運用菱形的判定與性質(zhì)是解題的關(guān)鍵.24、⑴4×6-5⑵答案不唯一.如n(n+2)-(n+1)⑶n(n+2)-(n+1)2==-1.【解析】(1)根據(jù)①②③的算式中,變與不變的部分,找出規(guī)律,寫出新的算式;(2)將(1)中,發(fā)現(xiàn)的規(guī)律,由特殊到一般,得出結(jié)論;(3)一定成立.利用整式的混合運算方法加以證明.25、(1)小張的發(fā)現(xiàn)正確;(2)詳見解析;(3)∠A=36°;(4)【解析】

嘗試探究:根據(jù)勾股定理計算即可;拓展延伸:(1)由AE2=AC?EC,推出,又AE=FC,推出,即可解問題;(2)利用相似三角形的性質(zhì)即可解決問題;(3)如圖,過點F作FM⊥AC交AC于點M,根據(jù)cos∠A=,求出AM、AF即可;應(yīng)用遷移:利用(3)中結(jié)論即可解決問題;【詳解】解:嘗試探究:﹣1;∵∠ACB=90°,BC=1,AC=2,∴AB=,∴AD=AE=,∵AE2=()2=6﹣2,AC?EC=2×[2﹣()]=6﹣,∴AE2=AC?EC,∴小張的發(fā)現(xiàn)正確;拓展延伸:(1)∵AE2=AC?EC,∴∵AE=FC,∴,又∵∠C=∠C,∴△ACF∽△FCE;(2)∵△ACF∽△FCE,∴∠AFC=∠CEF,又∵EF=FC,∴∠C=∠CEF,∴∠AFC=∠C,∴AC=AF,∵AE=EF,∴∠A=∠AFE,∴∠FEC=2∠A,∵EF=FC,∴∠C=2∠A,∵∠AFC=∠C=2∠A,∵∠AFC+∠C+∠A=180°,∴∠A=36°;(3)如圖,過點F作FM⊥AC交AC于點M,由嘗試探究可知AE=,EC=,∵EF=FC,由(2)得:AC=AF=2,∴ME=,∴AM=,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論