黑龍江省哈爾濱市達標名校2023-2024學年中考數學全真模擬試題含解析_第1頁
黑龍江省哈爾濱市達標名校2023-2024學年中考數學全真模擬試題含解析_第2頁
黑龍江省哈爾濱市達標名校2023-2024學年中考數學全真模擬試題含解析_第3頁
黑龍江省哈爾濱市達標名校2023-2024學年中考數學全真模擬試題含解析_第4頁
黑龍江省哈爾濱市達標名校2023-2024學年中考數學全真模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省哈爾濱市達標名校2023-2024學年中考數學全真模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如果與互補,與互余,則與的關系是()A. B.C. D.以上都不對2.如果關于x的方程沒有實數根,那么c在2、1、0、中取值是()A.; B.; C.; D..3.若分式的值為零,則x的值是()A.1 B. C. D.24.一組數據:1、2、2、3,若添加一個數據2,則發(fā)生變化的統計量是A.平均數 B.中位數 C.眾數 D.方差5.PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學記數法表示為()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣56.小王拋一枚質地均勻的硬幣,連續(xù)拋4次,硬幣均正面朝上落地,如果他再拋第5次,那么硬幣正面朝上的概率為()A.1 B. C. D.7.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.218.6的相反數為A.-6 B.6 C. D.9.如圖,AB為⊙O的直徑,C為⊙O上的一動點(不與A、B重合),CD⊥AB于D,∠OCD的平分線交⊙O于P,則當C在⊙O上運動時,點P的位置()

A.隨點C的運動而變化B.不變C.在使PA=OA的劣弧上D.無法確定10.若2m﹣n=6,則代數式m-n+1的值為()A.1 B.2 C.3 D.411.2017年牡丹區(qū)政府工作報告指出:2012年以來牡丹區(qū)經濟社會發(fā)展取得顯著成就,綜合實力明顯提升,地區(qū)生產總值由156.3億元增加到338億元,年均可比增長11.4%,338億用科學記數法表示為()A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×101012.我國古代《易經》一書中記載,遠古時期,人們通過在繩子上打結來記錄數量,即“結繩計數”.如圖,一位母親在從右到左依次排列的繩子上打結,滿七進一,用來記錄孩子自出生后的天數,由圖可知,孩子自出生后的天數是()A.84 B.336 C.510 D.1326二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知是的高線,且,,則_________.14.如圖,四邊形ABCD是菱形,☉O經過點A,C,D,與BC相交于點E,連接AC,AE,若∠D=78°,則∠EAC=________°.15.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點C的對應點為,再將所折得的圖形沿EF折疊,使得點D和點A重合若,,則折痕EF的長為______.16.如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點D,DE平分∠BDC交BC于點E,則=.17.標號分別為1,2,3,4,……,n的n張標簽(除標號外其它完全相同),任摸一張,若摸得奇數號標簽的概率大于0.5,則n可以是_____.18.若一個正n邊形的每個內角為144°,則這個正n邊形的所有對角線的條數是_________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)解不等式組,請結合題意填空,完成本題的解答.(1)解不等式①,得_____;(2)解不等式②,得_____;(3)把不等式①和②的解集在數軸上表示出來;(4)原不等式組的解集為_____.20.(6分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點P為優(yōu)弧上一點(點P不與A,B重合),將圖形沿BP折疊,得到點A的對稱點A′.發(fā)現:(1)點O到弦AB的距離是,當BP經過點O時,∠ABA′=;(2)當BA′與⊙O相切時,如圖2,求折痕的長.拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點P(不與點M,N重合)為半圓上一點,將圓形沿NP折疊,分別得到點M,O的對稱點A′,O′,設∠MNP=α.(1)當α=15°時,過點A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關系,并說明理由;(2)如圖4,當α=°時,NA′與半圓O相切,當α=°時,點O′落在上.(3)當線段NO′與半圓O只有一個公共點N時,直接寫出β的取值范圍.21.(6分)某學校為增加體育館觀眾坐席數量,決定對體育館進行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設計方案是否滿足安全要求呢?請說明理由.(參考數據:sin37°≈,tan37°≈)22.(8分)某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:銷售時段銷售數量銷售收入A種型號B種型號第一周3臺5臺1800元第二周4臺10臺3100元(進價、售價均保持不變,利潤=銷售收入-進貨成本)(1)求A,B兩種型號的電風扇的銷售單價.(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.23.(8分)一個不透明的袋子中,裝有標號分別為1、-1、2的三個小球,他們除標號不同外,其余都完全相同;攪勻后,從中任意取一個球,標號為正數的概率是;攪勻后,從中任取一個球,標號記為k,然后放回攪勻再取一個球,標號記為b,求直線y=kx+b經過一、二、三象限的概率.24.(10分)已知△ABC中,AD是∠BAC的平分線,且AD=AB,過點C作AD的垂線,交AD的延長線于點H.(1)如圖1,若∠BAC=60°.①直接寫出∠B和∠ACB的度數;②若AB=2,求AC和AH的長;(2)如圖2,用等式表示線段AH與AB+AC之間的數量關系,并證明.25.(10分)如圖,矩形ABCD中,O是AC與BD的交點,過O點的直線EF與AB、CD的延長線分別交于E、F.(1)證明:△BOE≌△DOF;(2)當EF⊥AC時,求證四邊形AECF是菱形.26.(12分)4月23日是世界讀書日,總書記說:“讀書可以讓人保持思想活力,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然之氣。”某校響應號召,鼓勵師生利用課余時間廣泛閱讀,該校文學社為了解學生課外閱讀的情況,抽樣調查了部分學生每周用于課外閱讀的時間,過程如下:收集數據從學校隨機抽取20名學生,進行了每周用于課外閱讀時間的調查,數據如下(單位:min):30608150401101301469010060811201407081102010081整理數據按如下分段整理樣本數據并補全表格:課外閱讀時間(min)等級DCBA人數38分析數據補全下列表格中的統計量:平均數中位數眾數80得出結論(1)用樣本中的統計量估計該校學生每周用于課外閱讀時間的情況等級為;(2)如果該?,F有學生400人,估計等級為“”的學生有多少名?(3)假設平均閱讀一本課外書的時間為160分鐘,請你選擇一種統計量估計該校學生每人一年(按52周計算)平均閱讀多少本課外書?27.(12分)某市旅游部門統計了今年“五?一”放假期間該市A、B、C、D四個旅游景區(qū)的旅游人數,并繪制出如圖所示的條形統計圖和扇形統計圖,根據圖中的信息解答下列問題:(1)求今年“五?一”放假期間該市這四個景點共接待游客的總人數;(2)扇形統計圖中景點A所對應的圓心角的度數是多少,請直接補全條形統計圖;(3)根據預測,明年“五?一”放假期間將有90萬游客選擇到該市的這四個景點旅游,請你估計有多少人會選擇去景點D旅游?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據∠1與∠2互補,∠2與∠1互余,先把∠1、∠1都用∠2來表示,再進行運算.【詳解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故選C.【點睛】此題主要記住互為余角的兩個角的和為90°,互為補角的兩個角的和為180度.2、A【解析】分析:由方程根的情況,根據根的判別式可求得c的取值范圍,則可求得答案.詳解:∵關于x的方程x1+1x+c=0沒有實數根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故選A.點睛:本題主要考查了根的判別式,熟練掌握一元二次方程根的個數與根的判別式的關系是解題的關鍵.3、A【解析】試題解析:∵分式的值為零,∴|x|﹣1=0,x+1≠0,解得:x=1.故選A.4、D【解析】

解:A.原來數據的平均數是2,添加數字2后平均數仍為2,故A與要求不符;B.原來數據的中位數是2,添加數字2后中位數仍為2,故B與要求不符;C.原來數據的眾數是2,添加數字2后眾數仍為2,故C與要求不符;D.原來數據的方差==,添加數字2后的方差==,故方差發(fā)生了變化.故選D.5、B【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:0.0000025=2.5×10﹣6;故選B.【點睛】本題考查了用科學記數法表示較小的數,一般形式為a×10﹣n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.6、B【解析】

直接利用概率的意義分析得出答案.【詳解】解:因為一枚質地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是,故選B.【點睛】此題主要考查了概率的意義,明確概率的意義是解答的關鍵.7、A【解析】

根據已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.8、A【解析】

根據相反數的定義進行求解.【詳解】1的相反數為:﹣1.故選A.【點睛】本題主要考查相反數的定義,熟練掌握相反數的定義是解答的關鍵,絕對值相等,符號相反的兩個數互為相反數.9、B【解析】

因為CP是∠OCD的平分線,所以∠DCP=∠OCP,所以∠DCP=∠OPC,則CD∥OP,所以弧AP等于弧BP,所以PA=PB.從而可得出答案.【詳解】解:連接OP,∵CP是∠OCD的平分線,∴∠DCP=∠OCP,

又∵OC=OP,

∴∠OCP=∠OPC,

∴∠DCP=∠OPC,

∴CD∥OP,

又∵CD⊥AB,

∴OP⊥AB,

∴,

∴PA=PB.

∴點P是線段AB垂直平分線和圓的交點,

∴當C在⊙O上運動時,點P不動.

故選:B.【點睛】本題考查了圓心角、弦、弧之間的關系,以及平行線的判定和性質,在同圓或等圓中,等弧對等弦.10、D【解析】

先對m-n+1變形得到(2m﹣n)+1,再將2m﹣n=6整體代入進行計算,即可得到答案.【詳解】mn+1=(2m﹣n)+1當2m﹣n=6時,原式=×6+1=3+1=4,故選:D.【點睛】本題考查代數式,解題的關鍵是掌握整體代入法.11、D【解析】

根據科學記數法的定義可得到答案.【詳解】338億=33800000000=,故選D.【點睛】把一個大于10或者小于1的數表示為的形式,其中1≤|a|<10,這種記數法叫做科學記數法.12、C【解析】由題意滿七進一,可得該圖示為七進制數,化為十進制數為:1×73+3×72+2×7+6=510,故選:C.點睛:本題考查記數的方法,注意運用七進制轉化為十進制,考查運算能力,屬于基礎題.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4cm【解析】

根據三角形的高線的定義得到,根據直角三角形的性質即可得到結論.【詳解】解:∵是的高線,∴,∵,,∴.故答案為:4cm.【點睛】本題考查了三角形的角平分線、中線、高線,含30°角的直角三角形,熟練掌握直角三角形的性質是解題的關鍵.14、1.【解析】

解:∵四邊形ABCD是菱形,∠D=78°,∴∠ACB=(180°-∠D)=51°,又∵四邊形AECD是圓內接四邊形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案為:1°15、【解析】

首先由折疊的性質與矩形的性質,證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數的性質即可求得MF的長,又由中位線的性質求得EM的長,則問題得解【詳解】如圖,設與AD交于N,EF與AD交于M,根據折疊的性質可得:,,,四邊形ABCD是矩形,,,,,,,設,則,在中,,,,即,,,,≌,,,,,,由折疊的性質可得:,,,,,故答案為.【點睛】本題考查了折疊的性質,全等三角形的判定與性質,三角函數的性質以及勾股定理等知識,綜合性較強,有一定的難度,解題時要注意數形結合思想與方程思想的應用.16、3-【解析】試題分析:因為△ABC中,AB=AC,∠A=36°所以∠ABC=∠ACB=72°因為BD平分∠ABC交AC于點D所以∠ABD=∠CBD=36°=∠A因為DE平分∠BDC交BC于點E所以∠CDE=∠BDE=36°=∠A所以AD=BD=BC根據黃金三角形的性質知,BCAC=5-1EC=所以EC考點:黃金三角形點評:黃金三角形是一個等腰三角形,它的頂角為36°,每個底角為72°.它的腰與它的底成黃金比.當底角被平分時,角平分線分對邊也成黃金比,17、奇數.【解析】

根據概率的意義,分n是偶數和奇數兩種情況分析即可.【詳解】若n為偶數,則奇數與偶數個數相等,即摸得奇數號標簽的概率為0.5,若n為奇數,則奇數比偶數多一個,此時摸得奇數號標簽的概率大于0.5,故答案為:奇數.【點睛】本題考查概率公式,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率.18、2【解析】

由正n邊形的每個內角為144°結合多邊形內角和公式,即可得出關于n的一元一次方程,解方程即可求出n的值,將其代入中即可得出結論.【詳解】∵一個正n邊形的每個內角為144°,

∴144n=180×(n-2),解得:n=1.

這個正n邊形的所有對角線的條數是:==2.

故答案為2.【點睛】本題考查了多邊形的內角以及多邊形的對角線,解題的關鍵是求出正n邊形的邊數.本題屬于基礎題,難度不大,解決該題型題目時,根據多邊形的內角和公式求出多邊形邊的條數是關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)x>1;(1)x≤1;(3)答案見解析;(4)1<x≤1.【解析】

根據一元一次不等式的解法分別解出兩個不等式,根據不等式的解集的確定方法得到不等式組的解集.【詳解】解:(1)解不等式①,得x>1;(1)解不等式②,得x≤1;(3)把不等式①和②的解集在數軸上表示出來:(4)原不等式組的解集為:1<x≤1.【點睛】本題考查了一元一次不等式組的解法,掌握確定解集的規(guī)律:同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到是解題的關鍵.20、發(fā)現:(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】

發(fā)現:(1)利用垂徑定理和勾股定理即可求出點O到AB的距離;利用銳角三角函數的定義及軸對稱性就可求出∠ABA′.(2)根據切線的性質得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進而求出∠OBP=30°.過點O作OG⊥BP,垂足為G,容易求出OG、BG的長,根據垂徑定理就可求出折痕的長.拓展:(1)過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.用含30°角的直角三角形的性質可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當NA′與半圓相切時,可知ON⊥A′N,則可知α=45°,當O′在時,連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據點A′的位置不同得到線段NO′與半圓O只有一個公共點N時α的取值范圍是0°<α<30°或45°≤α<90°.【詳解】發(fā)現:(1)過點O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點A的對稱點A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過點O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的長為2拓展:(1)相切.分別過A'、O作A'H⊥MN于點H,OD⊥A'C于點D.如圖3所示,∵A'C∥MN∴四邊形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=A'N=MN=2∴A'C與半圓(2)當NA′與半圓O相切時,則ON⊥NA′,∴∠ONA′=2α=90°,∴α=45當O′在上時,連接MO′,則可知NO′=MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案為:45°;30°.(3)∵點P,M不重合,∴α>0,由(2)可知當α增大到30°時,點O′在半圓上,∴當0°<α<30°時點O′在半圓內,線段NO′與半圓只有一個公共點B;當α增大到45°時NA′與半圓相切,即線段NO′與半圓只有一個公共點B.當α繼續(xù)增大時,點P逐漸靠近點N,但是點P,N不重合,∴α<90°,∴當45°≤α<90°線段BO′與半圓只有一個公共點B.綜上所述0°<α<30°或45°≤α<90°.【點睛】本題考查了切線的性質、垂徑定理、勾股定理、三角函數的定義、30°角所對的直角邊等于斜邊的一半、翻折問題等知識,正確的作出輔助線是解題的關鍵.21、不滿足安全要求,理由見解析.【解析】

在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設計方案不滿足安全要求”.【詳解】解:施工方提供的設計方案不滿足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四邊形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的設計方案不滿足安全要求.22、(1)A,B兩種型號電風扇的銷售單價分別為250元/臺、210元/臺;(2)A種型號的電風扇最多能采購10臺;(3)在(2)的條件下超市不能實現利潤為1400元的目標.【解析】

(1)設A、B兩種型號電風扇的銷售單價分別為x元、y元,根據3臺A型號5臺B型號的電扇收入1800元,4臺A型號10臺B型號的電扇收入3100元,列方程組求解;(2)設采購A種型號電風扇a臺,則采購B種型號電風扇(30-a)臺,根據金額不多余5400元,列不等式求解;(3)設利潤為1400元,列方程求出a的值為20,不符合(2)的條件,可知不能實現目標.【詳解】(1)設A,B兩種型號電風扇的銷售單價分別為x元/臺、y元/臺.依題意,得解得答:A,B兩種型號電風扇的銷售單價分別為250元/臺、210元/臺.(2)設采購A種型號的電風扇a臺,則采購B種型號的電風扇(30-a)臺.依題意,得200a+170(30-a)≤5400,解得a≤10.答:A種型號的電風扇最多能采購10臺.(3)依題意,有(250-200)a+(210-170)(30-a)=1400,解得a=20.∵a≤10,∴在(2)的條件下超市不能實現利潤為1400元的目標.【點睛】本題考查了二元一次方程組和一元一次不等式的應用,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系和不等關系,列方程組和不等式求解.23、(1);(2)【解析】【分析】(1)直接運用概率的定義求解;(2)根據題意確定k>0,b>0,再通過列表計算概率.【詳解】解:(1)因為1、-1、2三個數中由兩個正數,所以從中任意取一個球,標號為正數的概率是.(2)因為直線y=kx+b經過一、二、三象限,所以k>0,b>0,又因為取情況:kb1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9種情況,符合條件的有4種,所以直線y=kx+b經過一、二、三象限的概率是.【點睛】本題考核知識點:求規(guī)概率.解題關鍵:把所有的情況列出,求出要得到的情況的種數,再用公式求出.24、(1)①45°,②;(2)線段AH與AB+AC之間的數量關系:2AH=AB+AC.證明見解析.【解析】

(1)①先根據角平分線的定義可得∠BAD=∠CAD=30°,由等腰三角形的性質得∠B=75°,最后利用三角形內角和可得∠ACB=45°;②如圖1,作高線DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的長;(2)如圖2,延長AB和CH交于點F,取BF的中點G,連接GH,易證△ACH≌△AFH,則AC=AF,HC=HF,根據平行線的性質和等腰三角形的性質可得AG=AH,再由線段的和可得結論.【詳解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如圖1,過D作DE⊥AC交AC于點E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)線段AH與AB+AC之間的數量關系:2AH=AB+AC.證明:如圖2,延長AB和CH交于點F,取BF的中點G,連接GH.易證△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【點睛】本題是三角形的綜合題,難度適中,考查了三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論