陜西省榆林市綏德2024年中考數(shù)學(xué)押題試卷含解析_第1頁(yè)
陜西省榆林市綏德2024年中考數(shù)學(xué)押題試卷含解析_第2頁(yè)
陜西省榆林市綏德2024年中考數(shù)學(xué)押題試卷含解析_第3頁(yè)
陜西省榆林市綏德2024年中考數(shù)學(xué)押題試卷含解析_第4頁(yè)
陜西省榆林市綏德2024年中考數(shù)學(xué)押題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

陜西省榆林市綏德2024年中考數(shù)學(xué)押題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,,則的度數(shù)為()A.115° B.110° C.105° D.65°2.一個(gè)正多邊形的內(nèi)角和為900°,那么從一點(diǎn)引對(duì)角線的條數(shù)是()A.3 B.4 C.5 D.63.下列命題是真命題的是()A.如實(shí)數(shù)a,b滿足a2=b2,則a=bB.若實(shí)數(shù)a,b滿足a<0,b<0,則ab<0C.“購(gòu)買1張彩票就中獎(jiǎng)”是不可能事件D.三角形的三個(gè)內(nèi)角中最多有一個(gè)鈍角4.關(guān)于的敘述正確的是()A.= B.在數(shù)軸上不存在表示的點(diǎn)C.=± D.與最接近的整數(shù)是35.如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠BFC為()A.75° B.60° C.55° D.45°6.如圖,點(diǎn)E在△DBC的邊DB上,點(diǎn)A在△DBC內(nèi)部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結(jié)論:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正確的是()A.①②③④ B.②④ C.①②③ D.①③④7.要使分式有意義,則x的取值范圍是()A.x= B.x> C.x< D.x≠8.如圖,在四邊形ABCD中,對(duì)角線AC⊥BD,垂足為O,點(diǎn)E、F、G、H分別為邊AD、AB、BC、CD的中點(diǎn).若AC=10,BD=6,則四邊形EFGH的面積為()A.20 B.15 C.30 D.609.下列計(jì)算正確的是()A.3a﹣2a=1 B.a(chǎn)2+a5=a7 C.(ab)3=ab3 D.a(chǎn)2?a4=a610.比1小2的數(shù)是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.將一副直角三角板如圖放置,使含30°角的三角板的短直角邊和含45°角的三角板的一條直角邊重合,則∠1的度數(shù)為_(kāi)_度.12.=__________13.分式方程=1的解為_(kāi)________.14.某公司銷售一種進(jìn)價(jià)為21元的電子產(chǎn)品,按標(biāo)價(jià)的九折銷售,仍可獲利20%,則這種電子產(chǎn)品的標(biāo)價(jià)為_(kāi)________元.15.如圖,將△AOB以O(shè)為位似中心,擴(kuò)大得到△COD,其中B(3,0),D(4,0),則△AOB與△COD的相似比為_(kāi)____.16.方程的根是__________.17.如圖,正方形OABC與正方形ODEF是位似圖形,點(diǎn)O為位似中心,位似比為2:3,點(diǎn)B、E在第一象限,若點(diǎn)A的坐標(biāo)為(1,0),則點(diǎn)E的坐標(biāo)是______.三、解答題(共7小題,滿分69分)18.(10分)三輛汽車經(jīng)過(guò)某收費(fèi)站下高速時(shí),在2個(gè)收費(fèi)通道A,B中,可隨機(jī)選擇其中的一個(gè)通過(guò).(1)三輛汽車經(jīng)過(guò)此收費(fèi)站時(shí),都選擇A通道通過(guò)的概率是;(2)求三輛汽車經(jīng)過(guò)此收費(fèi)站時(shí),至少有兩輛汽車選擇B通道通過(guò)的概率.19.(5分)已知反比例函數(shù)y=kx的圖象過(guò)點(diǎn)(1)試求該反比例函數(shù)的表達(dá)式;(2)M(m,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<m<3,過(guò)點(diǎn)M作直線MB∥x軸,交y軸于點(diǎn)B;過(guò)點(diǎn)A作直線AC∥y軸,交x軸于點(diǎn)C,交直線MB于點(diǎn)D.當(dāng)四邊形OADM的面積為6時(shí),請(qǐng)判斷線段BM與DM的大小關(guān)系,并說(shuō)明理由.20.(8分)關(guān)于x的一元二次方程x2+(m-1)x-(2m+3)=1.(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)寫出一個(gè)m的值,并求出此時(shí)方程的根.21.(10分)△ABC內(nèi)接于⊙O,AC為⊙O的直徑,∠A=60°,點(diǎn)D在AC上,連接BD作等邊三角形BDE,連接OE.如圖1,求證:OE=AD;如圖2,連接CE,求證:∠OCE=∠ABD;如圖3,在(2)的條件下,延長(zhǎng)EO交⊙O于點(diǎn)G,在OG上取點(diǎn)F,使OF=2OE,延長(zhǎng)BD到點(diǎn)M使BD=DM,連接MF,若tan∠BMF=,OD=3,求線段CE的長(zhǎng).22.(10分)先化簡(jiǎn),再求值:,其中,.23.(12分)車輛經(jīng)過(guò)潤(rùn)揚(yáng)大橋收費(fèi)站時(shí),4個(gè)收費(fèi)通道A.B、C、D中,可隨機(jī)選擇其中的一個(gè)通過(guò).一輛車經(jīng)過(guò)此收費(fèi)站時(shí),選擇A通道通過(guò)的概率是;求兩輛車經(jīng)過(guò)此收費(fèi)站時(shí),選擇不同通道通過(guò)的概率.24.(14分)如圖1,經(jīng)過(guò)原點(diǎn)O的拋物線y=ax2+bx(a≠0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).(1)求這條拋物線的表達(dá)式;(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);(3)如圖2,若點(diǎn)M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點(diǎn)P,使得△POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】

根據(jù)對(duì)頂角相等求出∠CFB=65°,然后根據(jù)CD∥EB,判斷出∠B=115°.【詳解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°?65°=115°,故選:A.【點(diǎn)睛】本題考查了平行線的性質(zhì),知道“兩直線平行,同旁內(nèi)角互補(bǔ)”是解題的關(guān)鍵.2、B【解析】

n邊形的內(nèi)角和可以表示成(n-2)?180°,設(shè)這個(gè)多邊形的邊數(shù)是n,就得到關(guān)于邊數(shù)的方程,從而求出邊數(shù),再求從一點(diǎn)引對(duì)角線的條數(shù).【詳解】設(shè)這個(gè)正多邊形的邊數(shù)是n,則

(n-2)?180°=900°,

解得:n=1.

則這個(gè)正多邊形是正七邊形.所以,從一點(diǎn)引對(duì)角線的條數(shù)是:1-3=4.故選B【點(diǎn)睛】本題考核知識(shí)點(diǎn):多邊形的內(nèi)角和.解題關(guān)鍵點(diǎn):熟記多邊形內(nèi)角和公式.3、D【解析】

A.兩個(gè)數(shù)的平方相等,這兩個(gè)數(shù)不一定相等,有正負(fù)之分即可判斷B.同號(hào)相乘為正,異號(hào)相乘為負(fù),即可判斷C.“購(gòu)買1張彩票就中獎(jiǎng)”是隨機(jī)事件即可判斷D.根據(jù)三角形內(nèi)角和為180度,三個(gè)角中不可能有兩個(gè)以上鈍角即可判斷【詳解】如實(shí)數(shù)a,b滿足a2=b2,則a=±b,A是假命題;數(shù)a,b滿足a<0,b<0,則ab>0,B是假命題;若實(shí)“購(gòu)買1張彩票就中獎(jiǎng)”是隨機(jī)事件,C是假命題;三角形的三個(gè)內(nèi)角中最多有一個(gè)鈍角,D是真命題;故選:D【點(diǎn)睛】本題考查了命題與定理,根據(jù)實(shí)際判斷是解題的關(guān)鍵4、D【解析】

根據(jù)二次根式的加法法則、實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系、二次根式的化簡(jiǎn)及無(wú)理數(shù)的估算對(duì)各項(xiàng)依次分析,即可解答.【詳解】選項(xiàng)A,+無(wú)法計(jì)算;選項(xiàng)B,在數(shù)軸上存在表示的點(diǎn);選項(xiàng)C,;選項(xiàng)D,與最接近的整數(shù)是=1.故選D.【點(diǎn)睛】本題考查了二次根式的加法法則、實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系、二次根式的化簡(jiǎn)及無(wú)理數(shù)的估算等知識(shí)點(diǎn),熟記這些知識(shí)點(diǎn)是解題的關(guān)鍵.5、B【解析】

由正方形的性質(zhì)和等邊三角形的性質(zhì)得出∠BAE=150°,AB=AE,由等腰三角形的性質(zhì)和內(nèi)角和定理得出∠ABE=∠AEB=15°,再運(yùn)用三角形的外角性質(zhì)即可得出結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故選:B.【點(diǎn)睛】本題考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、三角形的外角性質(zhì);熟練掌握正方形和等邊三角形的性質(zhì),并能進(jìn)行推理計(jì)算是解決問(wèn)題的關(guān)鍵.6、A【解析】分析:只要證明△DAB≌△EAC,利用全等三角形的性質(zhì)即可一一判斷;詳解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正確,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正確,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正確,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正確,故選A.點(diǎn)睛:本題考查全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,屬于中考選擇題中的壓軸題.7、D【解析】

本題主要考查分式有意義的條件:分母不能為0,即3x?7≠0,解得x.【詳解】∵3x?7≠0,∴x≠.故選D.【點(diǎn)睛】本題考查的是分式有意義的條件:當(dāng)分母不為0時(shí),分式有意義.8、B【解析】

有一個(gè)角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH是矩形,根據(jù)矩形的面積公式解答即可.【詳解】∵點(diǎn)E、F分別為四邊形ABCD的邊AD、AB的中點(diǎn),∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,F(xiàn)G∥HE且EF⊥FG.四邊形EFGH是矩形.∴四邊形EFGH的面積=EF?EH=1×5=2,即四邊形EFGH的面積是2.故選B.【點(diǎn)睛】本題考查的是中點(diǎn)四邊形.解題時(shí),利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一個(gè)角是直角的平行四邊形是矩形;(2)有三個(gè)角是直角的四邊形是矩形;(1)對(duì)角線互相平分且相等的四邊形是矩形.9、D【解析】

根據(jù)合并同類項(xiàng)法則、積的乘方及同底數(shù)冪的乘法的運(yùn)算法則依次計(jì)算后即可解答.【詳解】∵3a﹣2a=a,∴選項(xiàng)A不正確;∵a2+a5≠a7,∴選項(xiàng)B不正確;∵(ab)3=a3b3,∴選項(xiàng)C不正確;∵a2?a4=a6,∴選項(xiàng)D正確.故選D.【點(diǎn)睛】本題考查了合并同類項(xiàng)法則、積的乘方及同底數(shù)冪的乘法的運(yùn)算法則,熟練運(yùn)用法則是解決問(wèn)題的關(guān)鍵.10、C【解析】1-2=-1,故選C二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】

根據(jù)一副直角三角板的各個(gè)角的度數(shù),結(jié)合三角形內(nèi)角和定理,即可求解.【詳解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案為:1.【點(diǎn)睛】本題主要考查三角形的內(nèi)角和定理以及對(duì)頂角的性質(zhì),掌握三角形的內(nèi)角和等于180°,是解題的關(guān)鍵.12、2;【解析】試題解析:先求-2的平方4,再求它的算術(shù)平方根,即:.13、x=1【解析】分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.詳解:兩邊都乘以x+4,得:3x=x+4,解得:x=1,檢驗(yàn):x=1時(shí),x+4=6≠0,所以分式方程的解為x=1,故答案為:x=1.點(diǎn)睛:此題考查了解分式方程,利用了轉(zhuǎn)化的思想,解分式方程注意要檢驗(yàn).14、28【解析】設(shè)這種電子產(chǎn)品的標(biāo)價(jià)為x元,由題意得:0.9x?21=21×20%,解得:x=28,所以這種電子產(chǎn)品的標(biāo)價(jià)為28元.故答案為28.15、3:1.【解析】∵△AOB與△COD關(guān)于點(diǎn)O成位似圖形,

∴△AOB∽△COD,

則△AOB與△COD的相似比為OB:OD=3:1,

故答案為3:1(或).16、1.【解析】

把無(wú)理方程轉(zhuǎn)化為整式方程即可解決問(wèn)題.【詳解】?jī)蛇吰椒降玫剑?x﹣1=1,解得:x=1,經(jīng)檢驗(yàn):x=1是原方程的解.故答案為:1.【點(diǎn)睛】本題考查了無(wú)理方程,解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,注意必須檢驗(yàn).17、(,)【解析】

由題意可得OA:OD=2:3,又由點(diǎn)A的坐標(biāo)為(1,0),即可求得OD的長(zhǎng),又由正方形的性質(zhì),即可求得E點(diǎn)的坐標(biāo).【詳解】解:∵正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為2:3,∴OA:OD=2:3,∵點(diǎn)A的坐標(biāo)為(1,0),即OA=1,∴OD=,∵四邊形ODEF是正方形,∴DE=OD=.∴E點(diǎn)的坐標(biāo)為:(,).故答案為:(,).【點(diǎn)睛】此題考查了位似變換的性質(zhì)與正方形的性質(zhì),注意理解位似變換與相似比的定義是解此題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1);(2)【解析】

(1)用樹(shù)狀圖分3次實(shí)驗(yàn)列舉出所有情況,再看3輛車都選擇A通道通過(guò)的情況數(shù)占總情況數(shù)的多少即可;

(2)由(1)可知所有可能的結(jié)果數(shù)目,再看至少有兩輛汽車選擇B通道通過(guò)的情況數(shù)占總情況數(shù)的多少即可.【詳解】解:(1)畫樹(shù)狀圖得:共8種情況,甲、乙、丙三輛車都選擇A通道通過(guò)的情況數(shù)有1種,所以都選擇A通道通過(guò)的概率為,故答案為:;(2)∵共有8種等可能的情況,其中至少有兩輛汽車選擇B通道通過(guò)的有4種情況,∴至少有兩輛汽車選擇B通道通過(guò)的概率為.【點(diǎn)睛】考查了概率的求法;用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比;得到所求的情況數(shù)是解決本題的關(guān)鍵.19、(1)y=6x;(2)MB=【解析】

(1)將A(3,2)分別代入y=kx

,y=ax中,得a、k(2)有S△OMB=S△OAC=12×k=3

,可得矩形OBDC的面積為12;即OC×OB=12

;進(jìn)而可得m、n的值,故可得BM與DM【詳解】(1)將A(3,2)代入y=kx中,得2=k∴反比例函數(shù)的表達(dá)式為y=6(2)BM=DM,理由:∵S△OMB=S△OAC=12×k∴S矩形OBDC=S四邊形OADM+S△OMB+S△OAC=3+3+6=12,即OC·OB=12,∵OC=3,∴OB=4,即n=4,∴m=6∴MB=32,MD=3-32=3【點(diǎn)睛】本題考查了待定系數(shù)法求反比例函數(shù)和正比例函數(shù)解析式,反比例函數(shù)比例系數(shù)的幾何意義,矩形的性質(zhì)等知識(shí).熟練掌握待定系數(shù)法是解(1)的關(guān)鍵,掌握反比例函數(shù)系數(shù)的幾何意義是解(2)的關(guān)鍵.20、(1)見(jiàn)解析;(2)x1=1,x2=2【解析】

(1)根據(jù)根的判別式列出關(guān)于m的不等式,求解可得;(2)取m=-2,代入原方程,然后解方程即可.【詳解】解:(1)根據(jù)題意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,∵(m+2)2+4>1,∴方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)當(dāng)m=-2時(shí),由原方程得:x2-4x+2=1.整理,得(x-1)(x-2)=1,解得x1=1,x2=2.【點(diǎn)睛】本題主要考查根的判別式與韋達(dá)定理,一元二次方程ax2+bx+c=1(a≠1)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>1時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根;②當(dāng)△=1時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根;③當(dāng)△<1時(shí),方程無(wú)實(shí)數(shù)根.21、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)CE=.【解析】

(1)連接OB,證明△ABD≌△OBE,即可證出OE=AD.(2)連接OB,證明△OCE≌△OBE,則∠OCE=∠OBE,由(1)的全等可知∠ABD=∠OBE,則∠OCE=∠ABD.(3)過(guò)點(diǎn)M作AB的平行線交AC于點(diǎn)Q,過(guò)點(diǎn)D作DN垂直EG于點(diǎn)N,則△ADB≌△MQD,四邊形MQOG為平行四邊形,∠DMF=∠EDN,再結(jié)合特殊角度和已知的線段長(zhǎng)度求出CE的長(zhǎng)度即可.【詳解】解:(1)如圖1所示,連接OB,∵∠A=60°,OA=OB,∴△AOB為等邊三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE為等邊三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD;(2)如圖2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∠ABD=∠OBE,∵∠BOA=60°,∴∠EOC=∠BOE=60°,又∵OB=OC,OE=OE,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD;(3)如圖3所示,過(guò)點(diǎn)M作AB的平行線交AC于點(diǎn)Q,過(guò)點(diǎn)D作DN垂直EG于點(diǎn)N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四邊形MQOG為平行四邊形,設(shè)AD為x,則OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.故答案為(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)CE=.【點(diǎn)睛】本題考查圓的相關(guān)性質(zhì)以及與圓有關(guān)的計(jì)算,全等三角形的性質(zhì)和判定,第三問(wèn)構(gòu)造全等三角形找到與∠BMF相等的角為解題的關(guān)鍵.22、9【解析】

根據(jù)完全平方公式、平方差公式、單項(xiàng)式乘多項(xiàng)式可以化簡(jiǎn)題目中的式子,然后將x、y的值代入化簡(jiǎn)后的式子即可解答本題.【詳解】當(dāng),時(shí),原式【點(diǎn)睛】本題考查整式的化簡(jiǎn)求值,解答本題的關(guān)鍵是明確整式化簡(jiǎn)求值的方法.23、(1);(2).【解析】試題分析:(1)根據(jù)概率公式即可得到結(jié)論;(2)畫出樹(shù)狀圖即可得到結(jié)論.試題解析:(1)選擇A通道通過(guò)的概率=,故答案為;(2)設(shè)兩輛車為甲,乙,如圖,兩輛車經(jīng)過(guò)此收費(fèi)站時(shí),會(huì)有16種可能的結(jié)果,其中選擇不同通道通過(guò)的有12種結(jié)果,∴選擇不同通道通過(guò)的概率==.24、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】

(1)由直線解析式可求得B點(diǎn)坐標(biāo),由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線的表達(dá)式;(2)過(guò)C作CD∥y軸,交x軸于點(diǎn)E,交OB于點(diǎn)D,過(guò)B作BF⊥CD于點(diǎn)F,可設(shè)出C點(diǎn)坐標(biāo),利用C點(diǎn)坐標(biāo)可表示出CD的長(zhǎng),從而可表示出△BOC的面積,由條件可得到關(guān)于C點(diǎn)坐標(biāo)的方程,可求得C點(diǎn)坐標(biāo);(3)設(shè)MB交y軸于點(diǎn)N,則可證得△ABO≌△NBO,可求得N點(diǎn)坐標(biāo),可求得直線BN的解析式,聯(lián)立直線BM與拋物線解析式可求得M點(diǎn)坐標(biāo),過(guò)M作MG⊥y軸于點(diǎn)G,由B、C的坐標(biāo)可求得OB和OC的長(zhǎng),由相似三角形的性質(zhì)可求得的值,當(dāng)點(diǎn)P在第一象限內(nèi)時(shí),過(guò)P作PH⊥x軸于點(diǎn)H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點(diǎn)坐標(biāo);當(dāng)P點(diǎn)在第三象限時(shí),同理可求得P點(diǎn)坐標(biāo).【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點(diǎn)坐標(biāo)代入拋物線解析式可得:,解得:,∴拋

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論