2024屆遼寧省沈陽市法庫縣市級名校中考數(shù)學全真模擬試卷含解析_第1頁
2024屆遼寧省沈陽市法庫縣市級名校中考數(shù)學全真模擬試卷含解析_第2頁
2024屆遼寧省沈陽市法庫縣市級名校中考數(shù)學全真模擬試卷含解析_第3頁
2024屆遼寧省沈陽市法庫縣市級名校中考數(shù)學全真模擬試卷含解析_第4頁
2024屆遼寧省沈陽市法庫縣市級名校中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆遼寧省沈陽市法庫縣市級名校中考數(shù)學全真模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如果a﹣b=5,那么代數(shù)式(﹣2)?的值是()A.﹣ B. C.﹣5 D.52.下列運算正確的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a(chǎn)2?a4=a63.鐘鼎文是我國古代的一種文字,是鑄刻在殷周青銅器上的銘文,下列鐘鼎文中,不是軸對稱圖形的是()A. B. C. D.4.某校決定從三名男生和兩名女生中選出兩名同學擔任校藝術節(jié)文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.5.如圖,在平面直角坐標系中,是反比例函數(shù)的圖像上一點,過點做軸于點,若的面積為2,則的值是()A.-2 B.2 C.-4 D.46.某中學為了創(chuàng)建“最美校園圖書屋”,新購買了一批圖書,其中科普類圖書平均每本書的價格是文學類圖書平均每本書價格的1.2倍.已知學校用12000元購買文學類圖書的本數(shù)比用這些錢購買科普類圖書的本數(shù)多100本,那么學校購買文學類圖書平均每本書的價格是多少元?設學校購買文學類圖書平均每本書的價格是x元,則下面所列方程中正確的是()A. B.C. D.7.已知二次函數(shù)的圖象如圖所示,則下列說法正確的是()A.<0 B.<0 C.<0 D.<08.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經(jīng)過點,將繞點順時針方向旋轉(zhuǎn)(),交于點,交于點,則的值為()A. B. C. D.9.地球上的陸地面積約為149000000千米2,用科學記數(shù)法表示為()A.149×106千米2B.14.9×107千米2C.1.49×108千米2D.0.149×109千210.不等式2x﹣1<1的解集在數(shù)軸上表示正確的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.二十四節(jié)氣列入聯(lián)合國教科文組織人類非物質(zhì)文化遺產(chǎn)代表作名錄.太陽運行的軌道是一個圓形,古人將之稱作“黃道”,并把黃道分為24份,每15度就是一個節(jié)氣,統(tǒng)稱“二十四節(jié)氣”.這一時間認知體系被譽為“中國的第五大發(fā)明”.如圖,指針落在驚蟄、春分、清明區(qū)域的概率是_____.12.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點O,A,B,M均在格點上,P為線段OM上的一個動點.(1)OM的長等于_______;(2)當點P在線段OM上運動,且使PA2+PB2取得最小值時,請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點P的位置,并簡要說明你是怎么畫的.13.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是_________.14.已知|x|=3,y2=16,xy<0,則x﹣y=_____.15.計算(﹣3)+(﹣9)的結果為______.16.如圖,等腰△ABC的周長為21,底邊BC=5,AB的垂直平分線DE交AB于點D,交AC于點E,則△BEC的周長為____.三、解答題(共8題,共72分)17.(8分)某市A,B兩個蔬菜基地得知四川C,D兩個災民安置點分別急需蔬菜240t和260t的消息后,決定調(diào)運蔬菜支援災區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調(diào)運C,D兩個災區(qū)安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設從B地運往C處的蔬菜為x噸.請?zhí)顚懴卤?,并求兩個蔬菜基地調(diào)運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數(shù)關系式,并求總運費最小的調(diào)運方案;經(jīng)過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調(diào)動方案.18.(8分)某中學采用隨機的方式對學生掌握安全知識的情況進行測評,并按成績高低分成優(yōu)、良、中、差四個等級進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請根據(jù)有關信息解答:(1)接受測評的學生共有________人,扇形統(tǒng)計圖中“優(yōu)”部分所對應扇形的圓心角為________°,并補全條形統(tǒng)計圖;(2)若該校共有學生1200人,請估計該校對安全知識達到“良”程度的人數(shù);(3)測評成績前五名的學生恰好3個女生和2個男生,現(xiàn)從中隨機抽取2人參加市安全知識競賽,請用樹狀圖或列表法求出抽到1個男生和1個女生的概率.19.(8分)如圖,拋物線y=ax2+bx﹣2經(jīng)過點A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.20.(8分)如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點,BE交AC于F,連接DF.(1)證明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.21.(8分)小明準備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機的一個機翼,請你根據(jù)圖中的數(shù)據(jù)幫小明計算出CD的長度.(結果保留根號).22.(10分)先化簡,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.23.(12分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點E.求證:DE=CE.若∠CDE=35°,求∠A的度數(shù).24.如圖,已知△ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F.求證:△ABE≌△CAD;求∠BFD的度數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】【分析】先對括號內(nèi)的進行通分,進行分式的加減法運算,然后再進行分式的乘除法運算,最后把a-b=5整體代入進行求解即可.【詳解】(﹣2)?===a-b,當a-b=5時,原式=5,故選D.2、D【解析】

根據(jù)冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同類項的法則:把同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加分別進行計算即可.【詳解】A、(a2)5=a10,故原題計算錯誤;B、(x﹣1)2=x2﹣2x+1,故原題計算錯誤;C、3a2b和3ab2不是同類項,不能合并,故原題計算錯誤;D、a2?a4=a6,故原題計算正確;故選:D.【點睛】此題主要考查了冪的乘方、完全平方公式、合并同類項和同底數(shù)冪的乘法,關鍵是掌握各計算法則.3、A【解析】根據(jù)軸對稱圖形的概念求解.解:根據(jù)軸對稱圖形的概念可知:B,C,D是軸對稱圖形,A不是軸對稱圖形,故選A.“點睛”本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.4、B【解析】試題解析:列表如下:∴共有20種等可能的結果,P(一男一女)=.

故選B.5、C【解析】

根據(jù)反比例函數(shù)k的幾何意義,求出k的值即可解決問題【詳解】解:∵過點P作PQ⊥x軸于點Q,△OPQ的面積為2,

∴||=2,

∵k<0,

∴k=-1.

故選:C.【點睛】本題考查反比例函數(shù)k的幾何意義,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.6、B【解析】

首先設文學類圖書平均每本的價格為x元,則科普類圖書平均每本的價格為1.2x元,根據(jù)題意可得等量關系:學校用12000元購買文學類圖書的本數(shù)比用這些錢購買科普類圖書的本數(shù)多100本,根據(jù)等量關系列出方程,【詳解】設學校購買文學類圖書平均每本書的價格是x元,可得:故選B.【點睛】此題主要考查了分式方程的應用,關鍵是正確理解題意,找出題目中的等量關系,列出方程.7、B【解析】

根據(jù)拋物線的開口方向確定a,根據(jù)拋物線與y軸的交點確定c,根據(jù)對稱軸確定b,根據(jù)拋物線與x軸的交點確定b2-4ac,根據(jù)x=1時,y>0,確定a+b+c的符號.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線交于y軸的正半軸,∴c>0,∴ac>0,A錯誤;∵->0,a>0,∴b<0,∴B正確;∵拋物線與x軸有兩個交點,∴b2-4ac>0,C錯誤;當x=1時,y>0,∴a+b+c>0,D錯誤;故選B.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.8、C【解析】

先根據(jù)直角三角形斜邊上的中線性質(zhì)得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉(zhuǎn)α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了相似三角形的判定與性質(zhì).9、C【解析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于10時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).解:149

000

000=1.49×2千米1.故選C.把一個數(shù)寫成a×10n的形式,叫做科學記數(shù)法,其中1≤|a|<10,n為整數(shù).因此不能寫成149×106而應寫成1.49×2.10、D【解析】

先求出不等式的解集,再在數(shù)軸上表示出來即可.【詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數(shù)化為1得,x<1.在數(shù)軸上表示為:.故選D.【點睛】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

首先由圖可得此轉(zhuǎn)盤被平分成了24等份,其中驚蟄、春分、清明區(qū)域有3份,然后利用概率公式求解即可求得答案.【詳解】∵如圖,此轉(zhuǎn)盤被平分成了24等份,其中驚蟄、春分、清明有3份,∴指針落在驚蟄、春分、清明的概率是:.故答案為【點睛】此題考查了概率公式的應用.注意概率=所求情況數(shù)與總情況數(shù)之比.12、(1)4;(2)見解析;【解析】

解:(1)由勾股定理可得OM的長度(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求?!驹斀狻浚?)OM==4;故答案為4.(2)以點O為原點建立直角坐標系,則A(1,0),B(4,0),設P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴當a=時,PA2+PB2取得最小值,綜上,需作出點P滿足線段OP的長=;取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求.【點睛】(1)根據(jù)勾股定理即可得到結論;(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR即可得到結果.13、【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴∴∴∵PD⊥OA,點M是OP的中點,∴故答案為:【點睛】此題考查了等腰三角形的性質(zhì)與判定、含30°直角三角形的性質(zhì)以及直角三角形斜邊的中線的性質(zhì).此題難度適中,屬于中考常見題型,求出OP的長是解題關鍵.14、±3【解析】分析:本題是絕對值、平方根和有理數(shù)減法的綜合試題,同時本題還滲透了分類討論的數(shù)學思想.詳解:因為|x|=1,所以x=±1.因為y2=16,所以y=±2.又因為xy<0,所以x、y異號,當x=1時,y=-2,所以x-y=3;當x=-1時,y=2,所以x-y=-3.故答案為:±3.點睛:本題是一道綜合試題,本題中有分類的數(shù)學思想,求解時要注意分類討論.15、-1【解析】試題分析:利用同號兩數(shù)相加的法則計算即可得原式=﹣(3+9)=﹣1,故答案為﹣1.16、3【解析】試題分析:因為等腰△ABC的周長為33,底邊BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周長為=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考點:3.等腰三角形的性質(zhì);3.垂直平分線的性質(zhì).三、解答題(共8題,共72分)17、(1)見解析;(2)w=2x+9200,方案見解析;(3)0<m<2時,(2)中調(diào)運方案總運費最?。籱=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小.【解析】

(1)根據(jù)題意可得解.(2)w與x之間的函數(shù)關系式為:w=20(240?x)+25(x?40)+15x+18(300?x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運費最小的調(diào)運方案.(3)根據(jù)題意得出w與x之間的函數(shù)關系式,然后根據(jù)m的取值范圍不同分別分析得出總運費最小的調(diào)運方案.【詳解】解:(1)填表:依題意得:20(240?x)+25(x?40)=15x+18(300?x).解得:x=200.(2)w與x之間的函數(shù)關系為:w=20(240?x)+25(x?40)+15x+18(300?x)=2x+9200.依題意得:∴40?x?240在w=2x+9200中,∵2>0,∴w隨x的增大而增大,故當x=40時,總運費最小,此時調(diào)運方案為如表.(3)由題意知w=20(240?x)+25(x?40)+(15-m)x+18(300?x)=(2?m)x+9200∴0<m<2時,(2)中調(diào)運方案總運費最小;m=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小,其調(diào)運方案如表二.【點睛】此題考查一次函數(shù)的應用,解題關鍵在于根據(jù)題意列出w與x之間的函數(shù)關系式,并注意分類討論思想的應用.18、(1)80,135°,條形統(tǒng)計圖見解析;(2)825人;(3)圖表見解析,(抽到1男1女).【解析】試題分析:(1)、根據(jù)“中”的人數(shù)和百分比得出總人數(shù),然后求出優(yōu)所占的百分比,得出圓心角的度數(shù);(2)、根據(jù)題意得出“良”和“優(yōu)”兩種所占的百分比,從而得出全校的總數(shù);(3)、根據(jù)題意利用列表法或者樹狀圖法畫出所有可能出現(xiàn)的情況,然后根據(jù)概率的計算法則求出概率.試題解析:(1)80,135°;條形統(tǒng)計圖如圖所示(2)該校對安全知識達到“良”程度的人數(shù):(人)(3)解法一:列表如下:所有等可能的結果為20種,其中抽到一男一女的為12種,所以(抽到1男1女).女1女2女3男1男2女1---女2女1女3女1男1女1男2女1女2女1女2---女3女2男1女2男2女2女3女1女3女2女3---男1女3男2女3男1女1男1女2男1女3男1---男2男1男2女1男2女2男2女3男2男1男2---解法二:畫樹狀圖如下:所有等可能的結果為20種,其中抽到一男一女的為12種,所以(抽到1男1女).19、(1)y=﹣x2+x﹣2;(2)當t=2時,△DAC面積最大為4;(3)符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】

(1)把A與B坐標代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數(shù)解析式,利用二次函數(shù)性質(zhì)求出S的最大值即可;(3)存在P點,使得以A,P,M為頂點的三角形與△OAC相似,分當1<m<4時;當m<1時;當m>4時三種情況求出點P坐標即可.【詳解】(1)∵該拋物線過點A(4,0),B(1,0),∴將A與B代入解析式得:,解得:,則此拋物線的解析式為y=﹣x2+x﹣2;(2)如圖,設D點的橫坐標為t(0<t<4),則D點的縱坐標為﹣t2+t﹣2,過D作y軸的平行線交AC于E,由題意可求得直線AC的解析式為y=x﹣2,∴E點的坐標為(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,則當t=2時,△DAC面積最大為4;(3)存在,如圖,設P點的橫坐標為m,則P點的縱坐標為﹣m2+m﹣2,當1<m<4時,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①當==2時,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此時P(2,1);②當==時,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合題意,舍去)∴當1<m<4時,P(2,1);類似地可求出當m>4時,P(5,﹣2);當m<1時,P(﹣3,﹣14),綜上所述,符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【點睛】本題綜合考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標系里求三角形的面積及其最大值問題,要求會用字母代替長度,坐標,會對代數(shù)式進行合理變形,解決相似三角形問題時要注意分類討論.20、證明見解析【解析】試題分析:由AB=AD,CB=CD結合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再證△ABF≌△ADF即可得到∠AFB=∠AFD,結合∠AFB=∠CFE即可得到∠AFD=∠CFE;(2)由AB∥CD可得∠DCA=∠BAC結合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD結合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四邊形ABCD是菱形.試題解析:(1)在△ABC和△ADC中,

∵AB=AD,CB=CD,AC=AC,

∴△ABC≌△ADC,

∴∠BAC=∠DAC,

在△ABF和△ADF中,

∵AB=AD,∠BAC=∠DAC,AF=AF,

∴△ABF≌△ADF,

∴∠AFB=∠AFD.

(2)證明:∵AB∥CD,

∴∠BAC=∠ACD,

∵∠BAC=∠DAC,

∴∠ACD=∠CAD,

∴AD=CD,

∵AB=AD,CB=CD,

∴AB=CB=CD=AD,

∴四邊形ABCD是菱形.21、CD的長度為17﹣17cm.【解析】

在直角三角形中用三角函數(shù)求出FD,BE的長,而FC=AE=AB+BE,而CD=FC-FD,從而得到答案.【詳解】解:由題意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,則CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的長度為17﹣17cm.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論