![2023-2024學(xué)年山東省泰安市泰山區(qū)泰安一中高三最后一模數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view4/M02/38/1C/wKhkGGYbJt6AZiQSAAGRg8mZyOg108.jpg)
![2023-2024學(xué)年山東省泰安市泰山區(qū)泰安一中高三最后一模數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view4/M02/38/1C/wKhkGGYbJt6AZiQSAAGRg8mZyOg1082.jpg)
![2023-2024學(xué)年山東省泰安市泰山區(qū)泰安一中高三最后一模數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view4/M02/38/1C/wKhkGGYbJt6AZiQSAAGRg8mZyOg1083.jpg)
![2023-2024學(xué)年山東省泰安市泰山區(qū)泰安一中高三最后一模數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view4/M02/38/1C/wKhkGGYbJt6AZiQSAAGRg8mZyOg1084.jpg)
![2023-2024學(xué)年山東省泰安市泰山區(qū)泰安一中高三最后一模數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view4/M02/38/1C/wKhkGGYbJt6AZiQSAAGRg8mZyOg1085.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年山東省泰安市泰山區(qū)泰安一中高三最后一模數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)i為數(shù)單位,為z的共軛復(fù)數(shù),若,則()A. B. C. D.2.函數(shù)的圖象大致是()A. B.C. D.3.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.4.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.25.已知銳角滿足則()A. B. C. D.6.在中,角的對(duì)邊分別為,,若,,且,則的面積為()A. B. C. D.7.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為3,則可輸入的實(shí)數(shù)值的個(gè)數(shù)為()A.1 B.2 C.3 D.48.向量,,且,則()A. B. C. D.9.設(shè)全集,集合,,則()A. B. C. D.10.函數(shù)與的圖象上存在關(guān)于直線對(duì)稱的點(diǎn),則的取值范圍是()A. B. C. D.11.達(dá)芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數(shù)百年來讓無數(shù)觀賞者人迷.某業(yè)余愛好者對(duì)《蒙娜麗莎》的縮小影像作品進(jìn)行了粗略測(cè)繪,將畫中女子的嘴唇近似看作一個(gè)圓弧,在嘴角處作圓弧的切線,兩條切線交于點(diǎn),測(cè)得如下數(shù)據(jù):(其中).根據(jù)測(cè)量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對(duì)應(yīng)的圓心角大約等于()A. B. C. D.12.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)z1=1﹣2i,z2=a+2i(其中i是虛數(shù)單位,a∈R),若z1?z2是純虛數(shù),則a的值為_____.14.已知數(shù)列的各項(xiàng)均為正數(shù),記為的前n項(xiàng)和,若,,則________.15.若變量x,y滿足:,且滿足,則參數(shù)t的取值范圍為_______.16.如圖,已知扇形的半徑為1,面積為,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對(duì)邊分別為,若.(1)求角的大??;(2)若,為外一點(diǎn),,求四邊形面積的最大值.18.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實(shí)數(shù)的取值范圍.19.(12分)設(shè)等差數(shù)列的首項(xiàng)為0,公差為a,;等差數(shù)列的首項(xiàng)為0,公差為b,.由數(shù)列和構(gòu)造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設(shè),,請(qǐng)計(jì)算,,;(2)設(shè),,試求,的表達(dá)式(用i,j表示),并證明:對(duì)于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設(shè),,對(duì)于整數(shù)t,t不屬于數(shù)表M,求t的最大值.20.(12分)管道清潔棒是通過在管道內(nèi)釋放清潔劑來清潔管道內(nèi)壁的工具,現(xiàn)欲用清潔棒清潔一個(gè)如圖1所示的圓管直角彎頭的內(nèi)壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內(nèi)恰好處于位置(圖中給出的數(shù)據(jù)是圓管內(nèi)壁直徑大小,).(1)請(qǐng)用角表示清潔棒的長;(2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.21.(12分)已知函數(shù)是減函數(shù).(1)試確定a的值;(2)已知數(shù)列,求證:.22.(10分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點(diǎn).(1)求證:.(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由復(fù)數(shù)的除法求出,然后計(jì)算.【詳解】,∴.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘除法運(yùn)算,考查共軛復(fù)數(shù)的概念,掌握復(fù)數(shù)的運(yùn)算法則是解題關(guān)鍵.2、B【解析】
根據(jù)函數(shù)表達(dá)式,把分母設(shè)為新函數(shù),首先計(jì)算函數(shù)定義域,然后求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)判斷函數(shù)單調(diào)性,對(duì)應(yīng)函數(shù)圖像得到答案.【詳解】設(shè),,則的定義域?yàn)?,當(dāng),,單增,當(dāng),,單減,則.則在上單增,上單減,.選B.【點(diǎn)睛】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運(yùn)算,同學(xué)們還可以用特殊值法等方法進(jìn)行判斷.3、B【解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點(diǎn)睛:本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.4、B【解析】
求出圓心,代入漸近線方程,找到的關(guān)系,即可求解.【詳解】解:,一條漸近線,故選:B【點(diǎn)睛】利用的關(guān)系求雙曲線的離心率,是基礎(chǔ)題.5、C【解析】
利用代入計(jì)算即可.【詳解】由已知,,因?yàn)殇J角,所以,,即.故選:C.【點(diǎn)睛】本題考查二倍角的正弦、余弦公式的應(yīng)用,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.6、C【解析】
由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點(diǎn)睛】本題考查了向量共線定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.7、C【解析】試題分析:根據(jù)題意,當(dāng)時(shí),令,得;當(dāng)時(shí),令,得,故輸入的實(shí)數(shù)值的個(gè)數(shù)為1.考點(diǎn):程序框圖.8、D【解析】
根據(jù)向量平行的坐標(biāo)運(yùn)算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點(diǎn)睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.9、B【解析】
可解出集合,然后進(jìn)行補(bǔ)集、交集的運(yùn)算即可.【詳解】,,則,因此,.故選:B.【點(diǎn)睛】本題考查補(bǔ)集和交集的運(yùn)算,涉及一元二次不等式的求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.10、C【解析】
由題可知,曲線與有公共點(diǎn),即方程有解,可得有解,令,則,對(duì)分類討論,得出時(shí),取得極大值,也即為最大值,進(jìn)而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點(diǎn),即方程有解,即有解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),,故時(shí),取得極大值,也即為最大值,當(dāng)趨近于時(shí),趨近于,所以滿足條件.故選:C.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運(yùn)算求解等數(shù)學(xué)能力,屬于難題.11、A【解析】
由已知,設(shè).可得.于是可得,進(jìn)而得出結(jié)論.【詳解】解:依題意,設(shè).則.,.設(shè)《蒙娜麗莎》中女子的嘴唇視作的圓弧對(duì)應(yīng)的圓心角為.則,.故選:A.【點(diǎn)睛】本題考查了直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、切線的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.12、B【解析】
解出,分別代入選項(xiàng)中的值進(jìn)行驗(yàn)證.【詳解】解:,.當(dāng)時(shí),,此時(shí)不成立.當(dāng)時(shí),,此時(shí)成立,符合題意.故選:B.【點(diǎn)睛】本題考查了不等式的解法,考查了集合的關(guān)系.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
由題意,令即可得解.【詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數(shù),∴,解得:a=﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了復(fù)數(shù)的概念和運(yùn)算,屬于基礎(chǔ)題.14、127【解析】
已知條件化簡可化為,等式兩邊同時(shí)除以,則有,通過求解方程可解得,即證得數(shù)列為等比數(shù)列,根據(jù)已知即可解得所求.【詳解】由..故答案為:.【點(diǎn)睛】本題考查通過遞推公式證明數(shù)列為等比數(shù)列,考查了等比的求和公式,考查學(xué)生分析問題的能力,難度較易.15、【解析】
根據(jù)變量x,y滿足:,畫出可行域,由,解得直線過定點(diǎn),直線繞定點(diǎn)旋轉(zhuǎn)與可行域有交點(diǎn)即可,再結(jié)合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點(diǎn),由,解得,由,解得,要使,則與可行域有交點(diǎn),當(dāng)時(shí),滿足條件,當(dāng)時(shí),直線得斜率應(yīng)該不小于AC,而不大于AB,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,還考查了轉(zhuǎn)化運(yùn)算求解的能力,屬于中檔題.16、【解析】
根據(jù)題意,利用扇形面積公式求出圓心角,再根據(jù)等腰三角形性質(zhì)求出,利用向量的數(shù)量積公式求出.【詳解】設(shè)角,則,,所以在等腰三角形中,,則.故答案為:.【點(diǎn)睛】本題考查扇形的面積公式和向量的數(shù)量積公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)正弦定理化簡等式可得,即;(2)根據(jù)題意,利用余弦定理可得,再表示出,表示出四邊形,進(jìn)而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當(dāng)時(shí),四邊形的面積取最大值,最大值為.【點(diǎn)睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應(yīng)用,屬于基礎(chǔ)題.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用零點(diǎn)分段討論法把函數(shù)改寫成分段函數(shù)的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對(duì)值三角不等式求出的最小值,利用均值不等式求出的最小值,結(jié)合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當(dāng)時(shí),,,或,或,或所以不等式的解集為;(Ⅱ)因?yàn)?,又(?dāng)時(shí)等號(hào)成立),依題意,,,有,則,解之得,故實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查由存在性問題求參數(shù)的范圍、零點(diǎn)分段討論法解絕對(duì)值不等式、利用絕對(duì)值三角不等式和均值不等式求最值;考查運(yùn)算求解能力、分類討論思想、邏輯推理能力;屬于中檔題.19、(1)(2)詳見解析(3)29【解析】
(1)將,代入,可求出,,可代入求,,可求結(jié)果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數(shù)列的通項(xiàng)公式為:;等差數(shù)列的通項(xiàng)公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數(shù)列的通項(xiàng)公式為:;等差數(shù)列的通項(xiàng)公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對(duì)于正整數(shù),考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數(shù).反證法:假設(shè)集合中任何一個(gè)元素,都不是7的倍數(shù),則集合中每一元素關(guān)于7的余數(shù)可以為1,2,3,4,5,6,又因?yàn)榧现泄灿?個(gè)元素,所以集合中至少存在兩個(gè)元素關(guān)于7的余數(shù)相同,不妨設(shè)為,,其中,,.則這兩個(gè)元素的差為7的倍數(shù),即,所以,與矛盾,所以假設(shè)不成立,即原命題成立.即集合中至少有一元素是7的倍數(shù),不妨設(shè)該元素為,,,則存在,使,,,即,,,由已證可知,若,則存在,,使,而,所以為負(fù)整數(shù),設(shè),則,且,,,,所以,當(dāng),時(shí),對(duì)于整數(shù),若,則成立.(3)下面用反證法證明:若對(duì)于整數(shù),,則,假設(shè)命題不成立,即,且.則對(duì)于整數(shù),存在,,,,,使成立,整理,得,又因?yàn)?,,所以且?的倍數(shù),因?yàn)?,,所以,所以矛盾,即假設(shè)不成立.所以對(duì)于整數(shù),若,則,又由第二問,對(duì)于整數(shù),則,所以的最大值,就是集合中元素的最大值,又因?yàn)椋?,,所以.【點(diǎn)睛】本題考查數(shù)列的綜合應(yīng)用,以及反證法,求最值,屬于難題.20、(1);(2).【解析】
(1)過作的垂線,垂足為,易得,進(jìn)一步可得;(2)利用導(dǎo)數(shù)求得最大值即可.【詳解】(1)如圖,過作的垂線,垂足為,在直角中,,,所以,同理,.(2)設(shè),則,令,則,即.設(shè),且,則當(dāng)時(shí),,所以單調(diào)遞減;當(dāng)時(shí),,所以單調(diào)遞增,所以當(dāng)時(shí),取得極小值,所以.因?yàn)椋?,又,所以,又,所以,所以,所以,所以能通過此鋼管的鐵棒最大長度為.【點(diǎn)睛】本題考查導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用,考查學(xué)生的數(shù)學(xué)運(yùn)算求解能力,是一道中檔題.21、(Ⅰ)(Ⅱ)見證明【解析】
(Ⅰ)求導(dǎo)得,由是減函數(shù)得,對(duì)任意的,都有恒成立,構(gòu)造函數(shù),通過求導(dǎo)判斷它的單調(diào)性,令其最大值小于等于0,即可求出;(Ⅱ)由是減函數(shù),且可得,當(dāng)時(shí),,則,即,兩邊同除以得,,即,從而,兩邊取對(duì)數(shù),然后再證明恒成立即可,構(gòu)造函數(shù),,通過求導(dǎo)證明即可.【詳解】解:(Ⅰ)的定義域?yàn)椋?由是減函數(shù)得,對(duì)任意的,都有恒成立.設(shè).∵,由知,∴當(dāng)時(shí),;當(dāng)時(shí),,∴在上單調(diào)遞增,在上單調(diào)遞減,∴在時(shí)取得最大值.又∵,∴對(duì)任意的,恒成立,即的最大值為.∴,解得.(Ⅱ)由是減函數(shù),且可得,當(dāng)時(shí),,∴,即.兩邊同除以得,,即.從而,所以①.下面證;記,.∴,∵在上單調(diào)遞增,∴在上單調(diào)遞減,而,∴當(dāng)時(shí),恒成立,∴在上單調(diào)遞減,即時(shí),,∴當(dāng)時(shí),.∵,∴當(dāng)時(shí),,即②.綜上①②可得,.【點(diǎn)睛】本題考查了導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系,考查了函數(shù)的最值,考查了構(gòu)造函數(shù)的能力,考查了邏輯推理能力與計(jì)算求解能力,屬于難題.,22、(1)見解析(2)【解析】
(1)由已知可證明平面,從而得證面面垂直,再由,得線面垂直,從而得,由直角三角形得結(jié)論;(2)以為軸建立空間直角坐標(biāo)系,用空間向量法示二面角.【詳解】(1)證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 地質(zhì)勘探設(shè)備云平臺(tái)應(yīng)用考核試卷
- 信用合作社合規(guī)文化與道德風(fēng)險(xiǎn)防范考核試卷
- 化學(xué)品企業(yè)環(huán)境保護(hù)與節(jié)能減排考核試卷
- 三維打印技術(shù)在合成材料制造中的應(yīng)用考核試卷
- 農(nóng)用薄膜生命周期評(píng)價(jià)考核試卷
- 2025-2030年堅(jiān)果披薩行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- 2025-2030年戶外探險(xiǎn)夜視裝備行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- 2025-2030年商業(yè)街區(qū)照明亮化工程行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- 2025-2030年文化用品文化體驗(yàn)企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 2025-2030年手術(shù)室設(shè)備APP行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 蘇北四市(徐州、宿遷、淮安、連云港)2025屆高三第一次調(diào)研考試(一模)生物試卷(含答案)
- 監(jiān)察部部長崗位職責(zé)
- 山西省太原市杏花嶺區(qū)年三年級(jí)數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析
- 《農(nóng)機(jī)化促進(jìn)法解讀》課件
- 最高法院示范文本發(fā)布版3.4民事起訴狀答辯狀示范文本
- 2023-2024學(xué)年度上期七年級(jí)英語期末試題
- 2024年英語高考全國各地完形填空試題及解析
- 2024至2030年中國餐飲管理及無線自助點(diǎn)單系統(tǒng)數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024年燃?xì)廨啓C(jī)值班員技能鑒定理論知識(shí)考試題庫-下(多選、判斷題)
- 2024年服裝門店批發(fā)管理系統(tǒng)軟件項(xiàng)目可行性研究報(bào)告
- (優(yōu)化版)高中地理新課程標(biāo)準(zhǔn)【2024年修訂版】
評(píng)論
0/150
提交評(píng)論