




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆沈陽市重點中學(xué)中考數(shù)學(xué)四模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知,C是線段AB的黃金分割點,AC<BC,若AB=2,則BC=()A.3﹣ B.(+1) C.﹣1 D.(﹣1)2.如圖,△ABC中,DE∥BC,,AE=2cm,則AC的長是()A.2cm B.4cm C.6cm D.8cm3.已知關(guān)于x的一元二次方程mx2+2x-1=0有兩個不相等的實數(shù)根,則m的取值范圍是().A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>14.在實數(shù)|﹣3|,﹣2,0,π中,最小的數(shù)是()A.|﹣3| B.﹣2 C.0 D.π5.如圖,在△ABC中,CD⊥AB于點D,E,F(xiàn)分別為AC,BC的中點,AB=10,BC=8,DE=4.5,則△DEF的周長是()A.9.5 B.13.5 C.14.5 D.176.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-27.如圖,已知△ABC中,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.90° B.135° C.270° D.315°8.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn),使點D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°9.如圖所示,在平面直角坐標系中,拋物線y=-x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為().A.3 B. C. D.10.如圖所示,在平面直角坐標系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點C順時針旋轉(zhuǎn)180°,得到△CP3D,依此類推,則旋轉(zhuǎn)第2017次后,得到的等腰直角三角形的直角頂點P2018的坐標為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)二、填空題(共7小題,每小題3分,滿分21分)11.閱讀下面材料:在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:已知:∠ACB是△ABC的一個內(nèi)角.求作:∠APB=∠ACB.小明的做法如下:如圖①作線段AB的垂直平分線m;②作線段BC的垂直平分線n,與直線m交于點O;③以點O為圓心,OA為半徑作△ABC的外接圓;④在弧ACB上取一點P,連結(jié)AP,BP.所以∠APB=∠ACB.老師說:“小明的作法正確.”請回答:(1)點O為△ABC外接圓圓心(即OA=OB=OC)的依據(jù)是_____;(2)∠APB=∠ACB的依據(jù)是_____.12.分式方程的解是_____.13.布袋中裝有2個紅球和5個白球,它們除顏色外其它都相同.如果從這個布袋里隨機摸出一個球,那么所摸到的球恰好為紅球的概率是
________.14.某航空公司規(guī)定,旅客乘機所攜帶行李的質(zhì)量x(kg)與其運費y(元)由如圖所示的一次函數(shù)圖象確定,則旅客可攜帶的免費行李的最大質(zhì)量為kg15.如圖,直線y1=mx經(jīng)過P(2,1)和Q(-4,-2)兩點,且與直線y2=kx+b交于點P,則不等式kx+b>mx>-2的解集為_________________.16.如果某數(shù)的一個平方根是﹣5,那么這個數(shù)是_____.17.對于函數(shù)y=,當(dāng)函數(shù)y﹤-3時,自變量x的取值范圍是____________.三、解答題(共7小題,滿分69分)18.(10分)已知:二次函數(shù)C1:y1=ax2+2ax+a﹣1(a≠0)把二次函數(shù)C1的表達式化成y=a(x﹣h)2+b(a≠0)的形式,并寫出頂點坐標;已知二次函數(shù)C1的圖象經(jīng)過點A(﹣3,1).①求a的值;②點B在二次函數(shù)C1的圖象上,點A,B關(guān)于對稱軸對稱,連接AB.二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,求k的取值范圍.19.(5分)觀察下列各式:①②③由此歸納出一般規(guī)律__________.20.(8分)如圖,已知與拋物線C1過A(-1,0)、B(3,0)、C(0,-3).(1)求拋物線C1的解析式.(2)設(shè)拋物線的對稱軸與x軸交于點P,D為第四象限內(nèi)的一點,若△CPD為等腰直角三角形,求出D點坐標.21.(10分)如圖,已知二次函數(shù)的圖象與x軸交于A,B兩點,與y軸交于點C,的半徑為,P為上一動點.點B,C的坐標分別為______,______;是否存在點P,使得為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;連接PB,若E為PB的中點,連接OE,則OE的最大值______.22.(10分)在平面直角坐標系xOy中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A(0,4),B(2,0),C(-2,0)三點.(1)求二次函數(shù)的表達式;(2)在x軸上有一點D(-4,0),將二次函數(shù)的圖象沿射線DA方向平移,使圖象再次經(jīng)過點B.①求平移后圖象頂點E的坐標;②直接寫出此二次函數(shù)的圖象在A,B兩點之間(含A,B兩點)的曲線部分在平移過程中所掃過的面積.23.(12分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN24.(14分)解方程組:
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據(jù)黃金分割點的定義,知BC為較長線段;則BC=AB,代入數(shù)據(jù)即可得出BC的值.【詳解】解:由于C為線段AB=2的黃金分割點,且AC<BC,BC為較長線段;
則BC=2×=-1.
故答案為:-1.【點睛】本題考查了黃金分割,應(yīng)該識記黃金分割的公式:較短的線段=原線段的倍,較長的線段=原線段的倍.2、C【解析】
由∥可得△ADE∽△ABC,再根據(jù)相似三角形的性質(zhì)即可求得結(jié)果.【詳解】∵∥∴△ADE∽△ABC∴∵∴AC=6cm故選C.考點:相似三角形的判定和性質(zhì)點評:解答本題的關(guān)鍵是熟練掌握相似三角形的對應(yīng)邊成比例,注意對應(yīng)字母在對應(yīng)位置上.3、A【解析】
∵一元二次方程mx2+2x-1=0有兩個不相等的實數(shù)根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故選A.【點睛】本題考查一元二次方程ax2+bx+c=0(a≠0)根的判別式:(1)當(dāng)△=b2﹣4ac>0時,方程有兩個不相等的實數(shù)根;(2)當(dāng)△=b2﹣4ac=0時,方程有有兩個相等的實數(shù)根;(3)當(dāng)△=b2﹣4ac<0時,方程沒有實數(shù)根.4、B【解析】
直接利用利用絕對值的性質(zhì)化簡,進而比較大小得出答案.【詳解】在實數(shù)|-3|,-1,0,π中,|-3|=3,則-1<0<|-3|<π,故最小的數(shù)是:-1.故選B.【點睛】此題主要考查了實數(shù)大小比較以及絕對值,正確掌握實數(shù)比較大小的方法是解題關(guān)鍵.5、B【解析】
由三角形中位線定理和直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】∵在△ABC中,CD⊥AB于點D,E,F(xiàn)分別為AC,BC的中點,∴DE=AC=4.1,DF=BC=4,EF=AB=1,∴△DEF的周長=(AB+BC+AC)=×(10+8+9)=13.1.故選B.【點睛】考查了三角形中位線定理和直角三角形斜邊上的中線,三角形的中位線平行于第三邊,且等于第三邊的一半.6、A【解析】試題分析:原方程變形為:x(x-1)=0x1=0,x1=1.故選A.考點:解一元二次方程-因式分解法.7、C【解析】
根據(jù)四邊形的內(nèi)角和與直角三角形中兩個銳角關(guān)系即可求解.【詳解】解:∵四邊形的內(nèi)角和為360°,直角三角形中兩個銳角和為90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故選:C.【點睛】此題主要考查角度的求解,解題的關(guān)鍵是熟知四邊形的內(nèi)角和為360°.8、B【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點A順時針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.9、A【解析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點B,再利用配方法得到點A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當(dāng)y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因為AP垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當(dāng)H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【點睛】本題考查的是二次函數(shù)的綜合運用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.10、D【解析】
根據(jù)題意可以求得P1,點P2,點P3的坐標,從而可以發(fā)現(xiàn)其中的變化的規(guī)律,從而可以求得P2018的坐標,本題得以解決.【詳解】解:由題意可得,
點P1(1,1),點P2(3,-1),點P3(5,1),
∴P2018的橫坐標為:2×2018-1=4035,縱坐標為:-1,
即P2018的坐標為(4035,-1),
故選:D.【點睛】本題考查了點的坐標變化規(guī)律,解答本題的關(guān)鍵是發(fā)現(xiàn)各點的變化規(guī)律,求出相應(yīng)的點的坐標.二、填空題(共7小題,每小題3分,滿分21分)11、①線段垂直平分線上的點與這條線段兩個端點的距離相等;②等量代換同弧所對的圓周角相等【解析】
(1)根據(jù)線段的垂直平分線的性質(zhì)定理以及等量代換即可得出結(jié)論.
(2)根據(jù)同弧所對的圓周角相等即可得出結(jié)論.【詳解】(1)如圖2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(線段垂直平分線上的點與這條線段兩個端點的距離相等),∴OA=OB=OC(等量代換)故答案是:(2)∵,∴∠APB=∠ACB(同弧所對的圓周角相等).故答案是:(1)線段垂直平分線上的點與這條線段兩個端點的距離相等和等量代換;(2)同弧所對的圓周角相等.【點睛】考查作圖-復(fù)雜作圖、線段的垂直平分線的性質(zhì)、三角形的外心等知識,解題的關(guān)鍵是熟練掌握三角形外心的性質(zhì).12、x=13【解析】
解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結(jié)論.【詳解】,去分母,可得x﹣5=8,解得x=13,經(jīng)檢驗:x=13是原方程的解.【點睛】本題主要考查了解分式方程,解分式方程時,去分母后所得整式方程的解有可能使原方程中的分母為0,所以應(yīng)檢驗.13、2【解析】試題解析:∵一個布袋里裝有2個紅球和5個白球,∴摸出一個球摸到紅球的概率為:22+5考點:概率公式.14、20【解析】設(shè)函數(shù)表達式為y=kx+b把(30,300)、(50、900)代入可得:y=30x-600當(dāng)y=0時x=20所以免費行李的最大質(zhì)量為20kg15、-4<x<1【解析】將P(1,1)代入解析式y(tǒng)1=mx,先求出m的值為,將Q點縱坐標y=1代入解析式y(tǒng)=x,求出y1=mx的橫坐標x=-4,即可由圖直接求出不等式kx+b>mx>-1的解集為y1>y1>-1時,x的取值范圍為-4<x<1.
故答案為-4<x<1.
點睛:本題考查了一次函數(shù)與一元一次不等式,求出函數(shù)圖象的交點坐標及函數(shù)與x軸的交點坐標是解題的關(guān)鍵.16、25【解析】
利用平方根定義即可求出這個數(shù).【詳解】設(shè)這個數(shù)是x(x≥0),所以x=(-5)2=25.【點睛】本題解題的關(guān)鍵是掌握平方根的定義.17、-<x<0【解析】
根據(jù)反比例函數(shù)的性質(zhì):y隨x的增大而減小去解答.【詳解】解:函數(shù)y=中,y隨x的增大而減小,當(dāng)函數(shù)y﹤-3時又函數(shù)y=中,故答案為:-<x<0.【點睛】此題重點考察學(xué)生對反比例函數(shù)性質(zhì)的理解,熟練掌握反比例函數(shù)性質(zhì)是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)y1=a(x+1)2﹣1,頂點為(﹣1,﹣1);(2)①;②k的取值范圍是≤k≤或k=﹣1.【解析】
(1)化成頂點式即可求得;(2)①把點A(﹣3,1)代入二次函數(shù)C1:y1=ax2+2ax+a﹣1即可求得a的值;②根據(jù)對稱的性質(zhì)得出B的坐標,然后分兩種情況討論即可求得;【詳解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴頂點為(﹣1,﹣1);(2)①∵二次函數(shù)C1的圖象經(jīng)過點A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=;②∵A(﹣3,1),對稱軸為直線x=﹣1,∴B(1,1),當(dāng)k>0時,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過A(﹣3,1)時,1=9k﹣3k,解得k=,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過B(1,1)時,1=k+k,解得k=,∴≤k≤,當(dāng)k<0時,∵二次函數(shù)C2:y2=kx2+kx=k(x+)2﹣k,∴﹣k=1,∴k=﹣1,綜上,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,k的取值范圍是≤k≤或k=﹣1.【點睛】本題考查了二次函數(shù)和系數(shù)的關(guān)系,二次函數(shù)的最值問題,軸對稱的性質(zhì)等,分類討論是解題的關(guān)鍵.19、xn+1-1【解析】試題分析:觀察其右邊的結(jié)果:第一個是﹣1;第二個是﹣1;…依此類推,則第n個的結(jié)果即可求得.試題解析:(x﹣1)(++…x+1)=.故答案為.考點:平方差公式.20、(1)y=x2-2x-3,(2)D1(4,-1),D2(3,-4),D3(2,-2)【解析】
(1)設(shè)解析式為y=a(x-3)(x+1),把點C(0,-3)代入即可求出解析式;(2)根據(jù)題意作出圖形,根據(jù)等腰直角三角形的性質(zhì)即可寫出坐標.【詳解】(1)設(shè)解析式為y=a(x-3)(x+1),把點C(0,-3)代入得-3=a×(-3)×1解得a=1,∴解析式為y=x2-2x-3,(2)如圖所示,對稱軸為x=1,過D1作D1H⊥x軸,∵△CPD為等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)過點D2F⊥y軸,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,-4)由圖可知CD1與PD2交于D3,此時PD3⊥CD3,且PD3=CD3,PC=,∴PD3=CD3=故D3(2,-2)∴D1(4,-1),D2(3,-4),D3(2,-2)使△CPD為等腰直角三角形.【點睛】此題主要考察二次函數(shù)與等腰直角三角形結(jié)合的題,解題的關(guān)鍵是熟知二次函數(shù)的圖像與性質(zhì)及等腰直角三角形的性質(zhì).21、(1)B(1,0),C(0,﹣4);(2)點P的坐標為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).【解析】試題分析:(1)在拋物線解析式中令y=0可求得B點坐標,令x=0可求得C點坐標;(2)①當(dāng)PB與⊙相切時,△PBC為直角三角形,如圖1,連接BC,根據(jù)勾股定理得到BC=5,BP2的值,過P2作P2E⊥x軸于E,P2F⊥y軸于F,根據(jù)相似三角形的性質(zhì)得到=2,設(shè)OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐標,過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2),②當(dāng)BC⊥PC時,△PBC為直角三角形,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論;(1)如圖1中,連接AP,由OB=OA,BE=EP,推出OE=AP,可知當(dāng)AP最大時,OE的值最大.試題解析:(1)在中,令y=0,則x=±1,令x=0,則y=﹣4,∴B(1,0),C(0,﹣4);故答案為1,0;0,﹣4;(2)存在點P,使得△PBC為直角三角形,分兩種情況:①當(dāng)PB與⊙相切時,△PBC為直角三角形,如圖(2)a,連接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,過P2作P2E⊥x軸于E,P2F⊥y軸于F,則△CP2F∽△BP2E,四邊形OCP2B是矩形,∴=2,設(shè)OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴=2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2);②當(dāng)BC⊥PC時,△PBC為直角三角形,過P4作P4H⊥y軸于H,則△BOC∽△CHP4,∴=,∴CH=,P4H=,∴P4(,﹣﹣4);同理P1(﹣,﹣4);綜上所述:點P的坐標為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1)如圖(1),連接AP,∵OB=OA,BE=EP,∴OE=AP,∴當(dāng)AP最大時,OE的值最大,∵當(dāng)P在AC的延長線上時,AP的值最大,最大值=,∴OE的最大值為.故答案為.22、(1)y=﹣x2+4;(2)①E(5,9);②1.【解析】
(1)待定系數(shù)法即可解題,(2)①求出直線DA的解析式,根據(jù)頂點E在直線DA上,設(shè)出E的坐標,帶入即可求解;②AB掃過的面積是平行四邊形ABGE,根據(jù)S四邊形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK,求出點B(2,0),G(7,5),A(0,4),E(5,9),根據(jù)坐標幾何含義即可解題.【詳解】解:(1)∵A(0,4),B(2,0),C(﹣2,0)∴二次函數(shù)的圖象的頂點為A(0,4),∴設(shè)二次函數(shù)表達式為y=ax2+4,將B(2,0)代入,得4a+4=0,解得,a=﹣1,∴二次函數(shù)表達式y(tǒng)=﹣x2+4;(2)①設(shè)直線DA:y=kx+b(k≠0),將A(0,4),D(﹣4,0)代入,得,解得,,∴直線DA:y=x+4,由題意可知,平移后的拋物線的頂點E在直線DA上,∴設(shè)頂點E(m,m+4),∴平移后的拋物線表達式為y=﹣(x﹣m)2+m+4,又∵平移后的拋物線過點B(2,0),∴將其代入得,﹣(2﹣m)2+m+4=0,解得,m1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)年第一學(xué)期幼兒教學(xué)工作總結(jié)模版
- 創(chuàng)先爭優(yōu)個人學(xué)習(xí)心得體會模版
- 新生兒單純皰疹病毒感染的臨床護理
- 社保委托代表協(xié)議
- 重力教學(xué)設(shè)計
- 上學(xué)期八年級語文教學(xué)工作總結(jié)模版
- 某精密模具有限公司品質(zhì)管理系統(tǒng)
- 貓咪輸液護理常規(guī)
- 部編本大小多少教學(xué)設(shè)計
- 7S管理培訓(xùn)體系精要
- 封隔器加工合同協(xié)議
- 2025年全國國家版圖知識競賽(中小學(xué)組)題庫
- 漢中漢源電力招聘試題及答案
- 批評不可怕課件
- 金蝶K3-ERP系統(tǒng)管理制度
- 廚房用電安全知識
- 通信工程項目管理流程
- 具身智能項目建議書(參考)
- AI系列培訓(xùn)課件-人工智能技術(shù)及應(yīng)用課件第1章
- 云南省昆明市盤龍區(qū)2024-2025學(xué)年八年級上學(xué)期期末質(zhì)量監(jiān)測英語試題(含答案)
- DBJT13-369-2021 福建省裝配式建筑非砌筑內(nèi)隔墻技術(shù)標準
評論
0/150
提交評論