版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省淮安市朱壩中學2024年八年級下冊數(shù)學期末預測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.若關于x的不等式組有且僅有5個整數(shù)解,且關于y的分式方程有非負整數(shù)解,則滿足條件的所有整數(shù)a的和為()A.12 B.14 C.21 D.332.當a<0,b<0時,-a+2-b可變形為()A. B.- C. D.3.已知點在拋物線上,則下列結論正確的是()A. B. C. D.4.平行四邊形所具有的性質是()A.對角線相等 B.鄰邊互相垂直C.兩組對邊分別相等 D.每條對角線平分一組對角5.如圖,已知四邊形是平行四邊形,、分別為和邊上的一點,增加以下條件不能得出四邊形為平行四邊形的是()A. B. C. D.6.下列等式從左到右的變形,屬于因式分解的是()A. B.C. D.7.下列命題是真命題的是()A.對角線相等的四邊形是平行四邊形 B.對角線互相平分且相等的四邊形是平行四邊形C.對角線互相平分的四邊形是平行四邊形 D.對角線互相垂直的四邊形是平行四邊形8.如圖,在矩形ABCD中,動點P從點B出發(fā),沿BC,CD,DA運動到點A停止,設點P運動路程為x,△ABP的面積為y,如果y關于x的函數(shù)圖象如圖(2)所示,則矩形ABCD的面積是()A.10 B.16 C.20 D.369.將一個邊長為4cn的正方形與一個長,寬分別為8cm,2cm的矩形重疊放在一起,在下列四個圖形中,重疊部分的面積最大的是()A. B. C. D.10.直線y=﹣kx+k﹣3與直線y=kx在同一坐標系中的大致圖象可能是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在平面直角坐標系中,點在直線上,點關于軸的對稱點恰好落在直線上,則的值為_____.12.如果P(2,m),A(1,1),B(4,0)三點在同一直線上,則m的值為_________.13.如圖,在直角三角形ABC中,∠C=90°,AB=10,AC=8,點E、F分別為AC和AB的中點,則EF=____________.14.不等式4x﹣6≥7x﹣15的正整數(shù)解的個數(shù)是______.15.計算:+×=________.16.函數(shù)y=36x-10的圖象經(jīng)過第______象限.17.如圖,在平行四邊形中,已知,,,點在邊上,若以為頂點的三角形是等腰三角形,則的長是_____.18.已知是整數(shù),則正整數(shù)n的最小值為___三、解答題(共66分)19.(10分)定義:對于給定的一次函數(shù)y=ax+b(a≠0),把形如的函數(shù)稱為一次函數(shù)y=ax+b(a≠0)的衍生函數(shù).已知矩形ABCD的頂點坐標分別為A(1,0),B(1,2),C(-3,2),D(-3,0).(1)已知函數(shù)y=2x+l.①若點P(-1,m)在這個一次函數(shù)的衍生函數(shù)圖像上,則m=.②這個一次函數(shù)的衍生函數(shù)圖像與矩形ABCD的邊的交點坐標分別為.(2)當函數(shù)y=kx-3(k>0)的衍生函數(shù)的圖象與矩形ABCD有2個交點時,k的取值范圍是.20.(6分)先化簡,再求值:,其中a=1+.21.(6分)已知四邊形ABCD是矩形,對角線AC和BD相交于點P,若在矩形的上方作△DEA,且使DE∥AC,AE∥BD.(1)求證:四邊形DEAP是菱形;(2)若AE=CD,求∠DPC的度數(shù).22.(8分)如圖,在正方形ABCD中,點E為AB上的點(不與A,B重合),△ADE與△FDE關于DE對稱,作射線CF,與DE的延長線相交于點G,連接AG,(1)當∠ADE=15°時,求∠DGC的度數(shù);(2)若點E在AB上移動,請你判斷∠DGC的度數(shù)是否發(fā)生變化,若不變化,請證明你的結論;若會發(fā)生變化,請說明理由;(3)如圖2,當點F落在對角線BD上時,點M為DE的中點,連接AM,F(xiàn)M,請你判斷四邊形AGFM的形狀,并證明你的結論。23.(8分)如圖,某人欲橫渡一條河,由于水流的影響,實際上岸地點C偏離欲到達地點B相距50米,結果他在水中實際游的路程比河的寬度多10米,求該河的寬度AB為多少米?24.(8分)如圖①,在平面直角坐標系中,是函數(shù)的圖像上一點,是y軸上一動點,四邊形ABPQ是正方形(點A.B.P.Q按順時針方向排列)。(1)求a的值;(2)如圖②,當時,求點P的坐標;(3)若點P也在函數(shù)的圖像上,求b的值;(4)設正方形ABPQ的中心為M,點N是函數(shù)的圖像上一點,判斷以點P.Q.M.N為頂點的四邊形能否是正方形,如果能,請直接寫出b的值,如果不能,請說明理由。圖①圖②備用圖25.(10分)如圖1,平行四邊形ABCD在平面直角坐標系中,A、B(點A在點B的左側)兩點的橫坐標是方程32x2-23x-63(1)求平行四邊形ABCD的面積;(2)若P是第一象限位于直線BD上方的一點,過P作PE⊥BD于E,過E作EH⊥x軸于H點,作PF∥y軸交直線BD于F,F(xiàn)為BD中點,其中△PEF的周長是4+42;若M為線段AD上一動點,N為直線BD上一動點,連接HN,NM,求HN+NM-1010DM的最小值,此時y軸上有一個動點G,當(3)在(2)的情況下,將△AOD繞O點逆時針旋轉60°后得到ΔA'OD'如圖2,將線段OD'沿著x軸平移,記平移過程中的線段OD'為O'D″,在平面直角坐標系中是否存在點26.(10分)如圖,、分別為的邊、的中點,,延長至點,使得,連接、、.若時,求四邊形的周長.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】
先解不等式組,根據(jù)有5個整數(shù)解,確定a的取值2<a≤9,根據(jù)關于y的分式方程,得y=,根據(jù)分式方程有意義的條件確定a≠4,從而可得a的值并計算所有符合條件的和.【詳解】解:,解①得:x≤4,解②得:x>,∴不等式組解集為:<x≤4,∵不等式組有且僅有5個整數(shù)解,即0,1,2,3,4,∴-1≤<0,∴2<a≤9,?=1,去分母得:-y+a-3=y-1,y=,∵y有非負整數(shù)解,且y≠1,即a≠4,∴a=6或8,6+8=14,故選B.【點睛】本題考查了一元一次方程組的解、分式方程的解,此類題容易出錯,根據(jù)整數(shù)解的個數(shù)確定字母系數(shù)a的值,有難度,要細心.2、C【解析】試題解析:∵a<1,b<1,
∴-a>1,-b>1.
∴-a+2-b=()2+2+()2,
=()2.
故選C.3、A【解析】
分別計算自變量為1和2對應的函數(shù)值,然后對各選項進行判斷.【詳解】當x=1時,y1=?(x+1)+2=?(1+1)+2=?2;當x=2時,y=?(x+1)+2=?(2+1)+2=?7;所以.故選:A【點睛】此題考查二次函數(shù)頂點式以及二次函數(shù)的性質,解題關鍵在于分析函數(shù)圖象的情況4、C【解析】
根據(jù)平行四邊形的性質:平行四邊形的對角相等,對角線互相平分,對邊平行且相等,即可得出答案.【詳解】解:平行四邊形的對角相等,對角線互相平分,兩組對邊平行且相等.故選:C.【點睛】此題考查了平行四邊形的性質:平行四邊形的對角相等,對角線互相平分,對邊平行且相等;熟記平行四邊形的性質是關鍵.5、B【解析】
逐項根據(jù)平行四邊形的判定進行證明即可解題.【詳解】解:∵四邊形是平行四邊形,∴AB∥CD,AD∥BC,∠A=∠C,∠ABC=∠ADC,AB=CD,AD=BC,A.若,易證ED=BF,∵ED∥BF,∴四邊形為平行四邊形,B.若,由于條件不足,無法證明四邊形為平行四邊形,C.若,∴,易證△ABE≌△CDF,∴AE=CF,接下來的證明步驟同選項A,D.若,易證△ABE≌△CDF,∴AE=CF,接下來的證明步驟同選項A,故選B【點睛】本題考查了平行四邊形的判定與性質,可以針對各種平行四邊形的判定方法,給出條件,本題可通過構造條件證△AEB≌△CFD來解題.6、B【解析】
根據(jù)因式分解的定義逐個判斷即可.【詳解】解:A、不是因式分解,故本選項不符合題意;
B、是因式分解,故本選項符合題意;
C、不是因式分解,故本選項不符合題意;
D、不是因式分解,故本選項不符合題意;
故選:B.【點睛】本題考查了因式分解的定義,能熟記因式分解的定義是解此題的關鍵,把一個多項式化成幾個整式的積的形式,叫因式分解.7、C【解析】
根據(jù)對角線互相平分的四邊形是平行四邊形;對角線互相平分且相等的四邊形是矩形;對角線互相平分的四邊形是平行四邊形;對角線互相垂直平分的四邊形是菱形,即可做出解答。【詳解】解:A、對角線相等的四邊形是平行四邊形,說法錯誤,應是對角線互相平分的四邊形是平行四邊形;B、對角線互相平分且相等的四邊形是平行四邊形,說法錯誤,應是矩形;C、對角線互相平分的四邊形是平行四邊形,說法正確;D、對角線互相垂直平分的四邊形不一定是平行四邊形,錯誤;故選:C.【點睛】本題主要考查了平行四邊形,以及特殊的平行四邊形的判定,關鍵是熟練掌握各種四邊形的判定方法.8、C【解析】
點P從點B運動到點C的過程中,y與x的關系是一個一次函數(shù),運動路程為4時,面積發(fā)生了變化,說明BC的長為4,當點P在CD上運動時,三角形ABP的面積保持不變,就是矩形ABCD面積的一半,并且動路程由4到9,說明CD的長為5,然后求出矩形的面積.【詳解】解:∵當4≤x≤9時,y的值不變即△ABP的面積不變,P在CD上運動當x=4時,P點在C點上所以BC=4當x=9時,P點在D點上∴BC+CD=9∴CD=9-4=5∴△ABC的面積S=AB?BC=×4×5=10∴矩形ABCD的面積=2S=20故選:C.【點睛】本題考查的是動點問題的函數(shù)圖象,根據(jù)矩形中三角形ABP的面積和函數(shù)圖象,求出BC和CD的長,再用矩形面積公式求出矩形的面積.9、B【解析】
分別計算出各個圖形的重疊部分面積即可求解.【詳解】A.重疊部分為矩形,長是4寬是2,,所以面積為4×2=8;B.重疊部分是平行四邊形,與正方形邊重合部分的長大于2,高是4,所以面積大于8;C.圖C與圖B對比,因為圖C的傾斜度比圖B的傾斜度小,所以,圖C的底比圖B的底小,兩圖為等高不等底,所以圖C陰影部分的面積小于圖B陰影部分的面積;D.如圖,BD=42+4∴GH=42∴S重疊部分=2×(42+42故選B.【點睛】本題主要考查平行四邊形的、矩形及梯形的面積的運算,分別對選項進行計算判斷即可.10、B【解析】
若y=kx過第一、三象限,則k>0,所以y=-kx+k-3過第二、四象限,可對A、D進行判斷;若y=kx過第二、四象限,則k<0,-k>0,k-3<0,所以y=-kx+k-3過第一、三象限,與y軸的交點在x軸下方,則可對B、C進行判斷.【詳解】A、y=kx過第一、三象限,則k>0,所以y=-kx+k-3過第二、四象限,所以A選項錯誤;B、y=kx過第二、四象限,則k<0,-k>0,k-3<0,所以y=-kx+k-3過第一、三象限,與y軸的交點在x軸下方,所以B選項正確;C、y=kx過第二、四象限,則k<0,-k>0,k-3<0,所以y=-kx+k-3過第一、三象限,與y軸的交點在x軸下方,所以C選項錯誤;D、y=kx過第一、三象限,則k>0,所以y=-kx+k-3過第二、四象限,所以D選項錯誤.故選B.【點睛】本題考查了一次函數(shù)的圖象:一次函數(shù)y=kx+b(k≠0)的圖象為一條直線,當k>0,圖象過第一、三象限;當k<0,圖象過第二、四象限;直線與y軸的交點坐標為(0,b).二、填空題(每小題3分,共24分)11、1【解析】
由點A的坐標以及點A在直線y=-2x+3上,可得出關于m的一元一次方程,解方程可求出m值,即得出點A的坐標,再根據(jù)對稱的性質找出點B的坐標,由點B的坐標利用待定系數(shù)法即可求出k值.【詳解】解:點A在直線上,
,
點A的坐標為.
又點A、B關于y軸對稱,
點B的坐標為,
點在直線上,
,解得:.
故答案為:1.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征以及關于x、y軸對稱的點的坐標,解題的關鍵是求出點B的坐標.解決該題型時,找出點的坐標,利用待定系數(shù)法求出函數(shù)系數(shù)是關鍵.12、【解析】設直線的解析式為y=kx+b(k≠0),∵A(1,1),B(4,0),,解之得,∴直線AB的解析式為,∵P(2,m)在直線上,.13、3;【解析】
先利用勾股定理求出BC的長,然后再根據(jù)中位線定理求出EF即可.【詳解】∵直角三角形ABC中,∠C=90°,AB=10,AC=8,∴BC==6,∵點E、F分別為AB、AC的中點,∴EF是△ABC的中位線,∴EF=BC=×6=3,故答案為3.【點睛】本題考查了勾股定理,三角形中位線定理,熟練掌握這兩個定理的內容是解本題的關鍵.14、3【解析】
首先利用不等式的基本性質解不等式,再從不等式的解集中找出適合條件的正整數(shù)即可【詳解】不等式的解集是x≤3,故不等式4x-6≥7x-15的正整數(shù)解為1,2,3故答案為:3【點睛】此題考查一元一次不等式的整數(shù)解,掌握運算法則是解題關鍵15、3【解析】
先根據(jù)二次根式的乘法法則運算,然后化簡后合并即可.【詳解】解:原式=2+=3.故答案為:3.【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.16、【解析】
根據(jù)y=kx+b(k≠0,且k,b為常數(shù)),當k>0,b<0時,函數(shù)圖象過一、三、四象限.【詳解】解:因為函數(shù)中,,,所以函數(shù)圖象過一、三、四象限,故答案為:一、三、四.【點睛】此題主要考查了一次函數(shù)的性質,同學們應熟練掌握根據(jù)函數(shù)式判斷出函數(shù)圖象的位置,這是考查重點內容之一.17、2或或【解析】
分AB=BP,AB=AP,BP=AP三種情況進行討論,即可算出BP的長度有三個.【詳解】解:根據(jù)以為頂點的三角形是等腰三角形,可分三種情況①若AB=BP∵AB=2∴BP=2②若AB=AP過A點作AE⊥BC交BC于E,∵AB=AP,AE⊥BC∴BE=EP在Rt△ABE中∵∴AE=BE根據(jù)勾股定理AE2+BE2=AB2即2BE2=4解得BE=∴BP=③若BP=AP,則過P點作PF⊥AB∵AP=BP,PF⊥AB∴BF=AB=1在Rt△BFP中∵∴PF=BF=1根據(jù)勾股定理BP2=BF2+PF2即BP2=1+1=2,解得BP=∵2,,都小于3故BP=2或BP=或BP=.【點睛】本題主要考查了等腰三角形的性質和判定以及勾股定理,能利用分類討論思想分三類情況進行討論是解決本題的關鍵.BC=3在本題中的作用是BP的長度不能超過3,超過3的答案就要排除.18、1【解析】
因為是整數(shù),且,則1n是完全平方數(shù),滿足條件的最小正整數(shù)n為1.【詳解】∵,且是整數(shù),
∴是整數(shù),即1n是完全平方數(shù);
∴n的最小正整數(shù)值為1.
故答案為:1.【點睛】主要考查了二次根式的定義,關鍵是根據(jù)乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數(shù)是非負數(shù)進行解答.三、解答題(共66分)19、(1)①1,②(,2)或(,,0);(2)1<k<1;【解析】
(1)①x=-1<0,則m=-2×(-1)+1=1,即可求解;②一次函數(shù)的衍生函數(shù)圖象與矩形ABCD的邊的交點位置在BC和AD上,即可求解;(2)當直線在位置①時,函數(shù)和矩形有1個交點,當直線在位置②時,函數(shù)和圖象有1個交點,在圖①②之間的位置,直線與矩形有2個交點,即可求解.【詳解】解:(1)①x=-1<0,則m=-2×(-1)+1=1,故答案為:1;②一次函數(shù)的衍生函數(shù)圖象與矩形ABCD的邊的交點位置在BC和AD上,當y=2時,2x+1=2,解得:x=,當y=0時,2x+1=0,解得:x=,故答案為:(,2)或(,,0);(2)函數(shù)可以表示為:y=|k|x-1,如圖所示當直線在位置①時,函數(shù)和矩形有1個交點,當x=1時,y=|k|x-1=1|k|-1=0,k=±1,k>0,取k=1當直線在位置②時,函數(shù)和圖象有1個交點,同理k=1,故在圖①②之間的位置,直線與矩形有2個交點,即:1<k<1.【點睛】本題為一次函數(shù)綜合題,涉及到新定義、直線與圖象的交點等,其中(2),要注意分類求解,避免遺漏.20、原式=【解析】
首先把除法化為乘法進行計算,再進一步相減,然后把a的值代入計算【詳解】解:原式=====當a=1+.時,原式==【點睛】本題考查了分式的化簡求值,熟練掌握分母有理化是解題的關鍵.21、(1)見解析;(2)∠DPC=60°.【解析】試題分析:(1)由題中由已知條件可得其為平行四邊形,再加上一組鄰邊相等即為菱形.(2)由(1)中的結論即可證明△PDC為等邊三角形,從而得出∠DPC=60°.試題解析:(1)∵DE∥AC,AE∥BD,∴四邊形DEAP為平行四邊形,∵ABCD為矩形,∴AP=AC,DP=BD,AC=BD,∴AP=PD,PD=CP,∴四邊形DEAP為菱形;∵四邊形DEAP為菱形,∴AE=PD,∵AE=CD,∴PD=CD,∵PD=CP(上小題已證),∴△PDC為等邊三角形,∴∠DPC=60°.考點:菱形的判定.22、(1)∠DGC=45°;(2)∠DGC=45°不會變化;(3)四邊形AGFM是正方形【解析】
(1)根據(jù)對稱性及正方形性質可得∠CDF=60°=∠DFC,再利用三角形外角∠DFC=∠FDE+∠DPF可求∠DPC度數(shù);(2)由(1)知△DFC為等腰三角形,得出DF=DC,求出∠DFC=45o+∠EDF,由∠DFC=∠DGC+∠EDF可得∠DGC=45o;(3)證明FG=MF=MA=AG,∠AGF=90o,即可得出結論.【詳解】(1)△FDE與ADE關于DE對稱∴△FDE≌△ADE∴∠FDE=∠ADE=15o,AD=FD∴∠ADF=2∠FDE=30o∵ABCD為正方形∴AD=DC=FD,∠ADC=∠DAC=∠DFE=90o∴∠FDC=∠ADC-∠ADF=60o∴△DFC為等邊三角形∴∠DFC=60o∵∠DFC為△DGF外角∴∠DFC=∠FDE+∠DGC∴∠DGC=∠DFC-∠FDE=60-15o=45o(2)不變.證明:由(1)知△DFC為等腰三角形,DF=DC∴∠DFC=∠DCF=(180o-∠CDF)=90o-∠CDF①∵∠CDF=90o-∠ADF=90o-2∠EDF②將②代入①得∠DFC=45o+∠EDF∵∠DFC=∠DGC+∠EDF∴∠DGC=45o(3)四邊形AMFG為正方形.證明:∵M為Rt△ADE中斜邊DE的中點∴AM=DE∵M為Rt△FED中斜邊DE的中點∴FM=DE=AM=MD由(1)知△AED≌△FED∴AD=DF,∠ADG=∠FDG△ADG與△FDG中,AD=DF,∠ADG=∠FDG,DG=DG∴△ADG≌△FDG,由(2)知∠DGC=45o∴∠DGA=∠DGF=45o,AG=FG,∠AGF=∠DGA+∠DGF=90o∵DB為正方形對角線,∴∠ADB=∠45o,∵∠ADG=∠GDF=∠ADB=22.5o∵DM=FM∴∠GDF=∠MFD=22.5o∵∠GMF=∠GDF+∠MFD=45o∴∠GMF=∠DGF=45o∴MF=FG∴FG=MF=MA=AG,∠AGF=90o∴四邊形AMFG為正方形?!军c睛】本題主要考查了正方形的性質與判定.解題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答問題.23、1200米【解析】試題分析:由題可看出,A,B,C三點構成一個直角三角形,AB,BC為直角邊,AC,是斜邊,可設AB=X,AC=10+X因為BC=50根據(jù)勾股定理可知考點:勾股定理,三角函數(shù)的值點評:本題屬于勾股定理的基本運算和求解方法,在解題中需要合理的作圖24、(1);(2)P的坐標為.(3)或(4)或.【解析】
(1)利用待定系數(shù)法即可解決問題.
(2)如圖②中,作PE⊥x軸于E,AF⊥x軸于F.利用全等三角形的性質解決問題即可.
(3)如圖③中,作AF⊥OB于F,PE⊥OB于E.利用全等三角形的性質求出點P的坐標,再利用待定系數(shù)法解決問題即可.
(4)如圖④中,當點N在反比例函數(shù)圖形上時,想辦法用b表示點N的坐標,利用待定系數(shù)法解決問題即可.【詳解】(1)解:把代入,得;(2)解:如圖①,過點A作軸,垂足為M,過點P作軸,垂足為T,即.四邊形ABPQ是正方形,,,,,,,,A的坐標為,,,P的坐標為.(3)解:如圖②I.當時,分別過點A、P作軸、軸,垂足為、N.與(2)同理可證:,,,,;II.當時,過點作軸,垂足為.同理:,,綜上所述,點P的坐標為,點P在反比例函數(shù)圖像上,,解得或(4)或.圖①圖②【點睛】本題屬于反比例函數(shù)綜合題,考查了待定系數(shù)法,全等三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,學會利用參數(shù)構建方程解決問題,屬于中考壓軸題.25、(1)S平行四邊形ABCD=48;(2)G(0,11423),見解析;(3)滿足條件的點S的坐標為1-733,-2或【解析】
(1)解方程求出A,B兩點坐標,在Rt△AOD中,求出OD即可解決問題.(2)首先證明△EHB也是等腰直角三角形,以HE,HB為邊構造正方形EHBJ,連接JN,延長JE交OD于Q,作MT⊥OD于T,連接JT.在Rt△DMT中,易知MT=1010DM,根據(jù)對稱性可知:NH=NJ,推出HN+MM-1010DM=NJ+MN-MT≤JT,推出當JT最小時,HN+MM-1010DM的值最?。鐖D2中當點M在JQ的延長線上時,HN+MM-1010DM的值最小,此時M(-13,5),作點M關于y軸對稱點M′,連接CM′,延長CM′交y軸于點G(3)分五種情形分別畫出圖形,利用菱形的性質,中點坐標公式等知識一一求解即可.【詳解】解:(1)由32x2-23∴A(-2,0),B(1,0);在Rt△ADO中,∵∠AOD=90°,AD=210,OA=2;∴OD=A∵OB=1,∴OD=OB=1,∴△BOD是等腰直角三角形,∴S平行四邊形ABCD=AB?OD=8×1=48;(2)如圖1中,∵EH⊥OB,∴∠EHB=90°,∵△BOD是等腰直角三角形,∴∠EBH=45°,∴△EHB也是等腰直角三角形,以HE,HB為邊構造正方形EHBJ,連接JN,延長JE交OD于Q,作MT⊥OD于T,連接JT,在Rt△DMT中,易知MT=1010DM∵四邊形EHBJ是正方形,根據(jù)對稱性可知:NH=NJ,∴HN+MM-1010DM=NJ+MN-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于物聯(lián)網(wǎng)的農(nóng)產(chǎn)品物流智能化改造項目
- 大自然探險小記讀后感
- 生物科技研發(fā)合作協(xié)議書
- 交通行業(yè)智能公共交通調度方案
- 引進外資項目服務合同
- 名著之三字經(jīng)、百家姓的啟蒙感悟
- 交通運輸節(jié)能減排合作協(xié)議
- 人工智能驅動的智能家居開發(fā)協(xié)議
- 2025年莆田貨運考試題目
- 經(jīng)典兒童影片征文
- 保密培訓記錄表
- 專升本英語寫作專題講解課件
- 平安保險授權委托書
- 員工安全培訓教育制度
- 深圳證券交易所
- 各種管道護理評分標準
- 體育賽事志愿者管理
- 遼寧華電高科環(huán)保技術有限公司油泥煤循環(huán)流化床協(xié)同資源化工業(yè)化試驗項目環(huán)境影響評價報告書
- 復旦大學普物B期末考試試卷
- 剪映教程PPT版本新版剪影零基礎教學課程課件
- 非煤礦山安全風險分級管控與安全隱患排查治理u000b雙重預防機制建設知識
評論
0/150
提交評論