




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年上海市浦東新區(qū)進才中學高考數(shù)學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù),則的虛部是()A. B. C. D.12.已知中,角、所對的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件3.已知復數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.34.已知數(shù)列滿足,且成等比數(shù)列.若的前n項和為,則的最小值為()A. B. C. D.5.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.6.已知點P在橢圓τ:=1(a>b>0)上,點P在第一象限,點P關于原點O的對稱點為A,點P關于x軸的對稱點為Q,設,直線AD與橢圓τ的另一個交點為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.7.在中,內(nèi)角的平分線交邊于點,,,,則的面積是()A. B. C. D.8.已知命題:,,則為()A., B.,C., D.,9.已知函數(shù),關于x的方程f(x)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)10.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.11.現(xiàn)有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.12.已知函數(shù)滿足:當時,,且對任意,都有,則()A.0 B.1 C.-1 D.二、填空題:本題共4小題,每小題5分,共20分。13.(x+y)(2x-y)5的展開式中x3y3的系數(shù)為________.14.已知全集,,則________.15.在邊長為2的正三角形中,,則的取值范圍為______.16.有以下四個命題:①在中,的充要條件是;②函數(shù)在區(qū)間上存在零點的充要條件是;③對于函數(shù),若,則必不是奇函數(shù);④函數(shù)與的圖象關于直線對稱.其中正確命題的序號為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),且.(1)若,求的最小值,并求此時的值;(2)若,求證:.18.(12分)在中,角的對邊分別為,且.(1)求角的大小;(2)若函數(shù)圖象的一條對稱軸方程為且,求的值.19.(12分)在ABC中,角A,B,C的對邊分別為a,b,c,已知,(Ⅰ)求的大小;(Ⅱ)若,求面積的最大值.20.(12分)為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機抽取10天的數(shù)據(jù),整理如下:甲公司員工:410,390,330,360,320,400,330,340,370,350乙公司員工:360,420,370,360,420,340,440,370,360,420每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(nèi)(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根據(jù)題中數(shù)據(jù)寫出甲公司員工在這10天投遞的快件個數(shù)的平均數(shù)和眾數(shù);(2)為了解乙公司員工每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為(單位:元),求的分布列和數(shù)學期望;(3)根據(jù)題中數(shù)據(jù)估算兩公司被抽取員工在該月所得的勞務費.21.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大??;(2)在棱上確定一點,使二面角的平面角的余弦值為.22.(10分)某生物硏究小組準備探究某地區(qū)蜻蜓的翼長分布規(guī)律,據(jù)統(tǒng)計該地區(qū)蜻蜓有兩種,且這兩種的個體數(shù)量大致相等,記種蜻蜓和種蜻蜓的翼長(單位:)分別為隨機變量,其中服從正態(tài)分布,服從正態(tài)分布.(Ⅰ)從該地區(qū)的蜻蜓中隨機捕捉一只,求這只蜻蜓的翼長在區(qū)間的概率;(Ⅱ)記該地區(qū)蜻蜓的翼長為隨機變量,若用正態(tài)分布來近似描述的分布,請你根據(jù)(Ⅰ)中的結(jié)果,求參數(shù)和的值(精確到0.1);(Ⅲ)在(Ⅱ)的條件下,從該地區(qū)的蜻蜓中隨機捕捉3只,記這3只中翼長在區(qū)間的個數(shù)為,求的分布列及數(shù)學期望(分布列寫出計算表達式即可).注:若,則,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
化簡復數(shù),分子分母同時乘以,進而求得復數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復數(shù)的乘法、除法運算,考查共軛復數(shù)的虛部,屬于基礎題.2、D【解析】
由大邊對大角定理結(jié)合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對的邊分別是、,由大邊對大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點睛】本題考查充分條件、必要條件的判斷,考查三角形的性質(zhì)等基礎知識,考查邏輯推理能力,是基礎題.3、A【解析】,故,故選A.4、D【解析】
利用等比中項性質(zhì)可得等差數(shù)列的首項,進而求得,再利用二次函數(shù)的性質(zhì),可得當或時,取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數(shù)列通項公式、等比中項性質(zhì)、等差數(shù)列前項和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.5、A【解析】
聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關于的關系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關于的關系式是求解本題的關鍵;屬于中檔題、??碱}型.6、C【解析】
設,則,,,設,根據(jù)化簡得到,得到答案.【詳解】設,則,,,則,設,則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力和轉(zhuǎn)化能力.7、B【解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,進而求出,然后利用三角形的面積公式可計算出的面積.【詳解】為的角平分線,則.,則,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面積為.故選:B.【點睛】本題考查三角形面積的計算,涉及正弦定理和余弦定理以及三角形面積公式的應用,考查計算能力,屬于中等題.8、C【解析】
根據(jù)全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎題.9、D【解析】
原問題轉(zhuǎn)化為有四個不同的實根,換元處理令t,對g(t)進行零點個數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實數(shù)a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數(shù)零點問題,關鍵在于等價轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導函數(shù)討論函數(shù)單調(diào)性解決問題.10、A【解析】
根據(jù)題意,畫出幾何位置圖形,由圖形的位置關系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結(jié)合四個選項可知,只有正確.故選:A.【點睛】本題考查了空間幾何體中直線與平面位置關系的判斷與綜合應用,對空間想象能力要求較高,屬于中檔題.11、B【解析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.12、C【解析】
由題意可知,代入函數(shù)表達式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點睛】本題考查了分段函數(shù)和函數(shù)周期的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、40【解析】
先求出的展開式的通項,再求出即得解.【詳解】設的展開式的通項為,令r=3,則,令r=2,則,所以展開式中含x3y3的項為.所以x3y3的系數(shù)為40.故答案為:40【點睛】本題主要考查二項式定理求指定項的系數(shù),意在考查學生對這些知識的理解掌握水平.14、【解析】
利用集合的補集運算即可求解.【詳解】由全集,,所以.故答案為:【點睛】本題考查了集合的補集運算,需理解補集的概念,屬于基礎題.15、【解析】
建立直角坐標系,依題意可求得,而,,,故可得,且,由此構造函數(shù),,利用二次函數(shù)的性質(zhì)即可求得取值范圍.【詳解】建立如圖所示的平面直角坐標系,則,,,設,,,,根據(jù),即,,,則,,即,,,則,,所以,,,,,,且,故,設,,易知二次函數(shù)的對稱軸為,故函數(shù)在,上的最大值為,最小值為,故的取值范圍為.故答案為:.【點睛】本題考查平面向量數(shù)量積的坐標運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意通過設元、消元,將問題轉(zhuǎn)化為元二次函數(shù)的值域問題.16、①【解析】
由三角形的正弦定理和邊角關系可判斷①;由零點存在定理和二次函數(shù)的圖象可判斷②;由,結(jié)合奇函數(shù)的定義,可判斷③;由函數(shù)圖象對稱的特點可判斷④.【詳解】解:①在中,,故①正確;②函數(shù)在區(qū)間上存在零點,比如在存在零點,但是,故②錯誤;③對于函數(shù),若,滿足,但可能為奇函數(shù),故③錯誤;④函數(shù)與的圖象,可令,即,即有和的圖象關于直線對稱,即對稱,故④錯誤.故答案為:①.【點睛】本題主要考查函數(shù)的零點存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)最小值為,此時;(2)見解析【解析】
(1)由已知得,法一:,,根據(jù)二次函數(shù)的最值可求得;法二:運用基本不等式構造,可得最值;法三:運用柯西不等式得:,可得最值;(2)由絕對值不等式得,,又,可得證.【詳解】(1),法一:,,的最小值為,此時;法二:,,即的最小值為,此時;法三:由柯西不等式得:,,即的最小值為,此時;(2),,又,.【點睛】本題考查運用基本不等式,柯西不等式,絕對值不等式進行不等式的證明和求解函數(shù)的最值,屬于中檔題.18、(1)(2)【解析】
(1)由已知利用三角函數(shù)恒等變換的應用,正弦定理可求,即可求的值.(2)利用三角函數(shù)恒等變換的應用,可得,根據(jù)題意,得到,解得,得到函數(shù)的解析式,進而求得的值,利用三角函數(shù)恒等變換的應用可求的值.【詳解】(1)由題意,根據(jù)正弦定理,可得,又由,所以,可得,即,又因為,則,可得,∵,∴.(2)由(1)可得,所以函數(shù)的圖象的一條對稱軸方程為,∴,得,即,∴,又,∴,∴.【點睛】本題主要考查了三角函數(shù)恒等變換的應用,正弦定理在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.19、(1)(2)【解析】
分析:(1)利用正弦定理以及誘導公式與和角公式,結(jié)合特殊角的三角函數(shù)值,求得角C;(2)運用向量的平方就是向量模的平方,以及向量數(shù)量積的定義,結(jié)合基本不等式,求得的最大值,再由三角形的面積公式計算即可得到所求的值.詳解:(1)∵,,(Ⅱ)取中點,則,在中,,(注:也可將兩邊平方)即,,所以,當且僅當時取等號.此時,其最大值為.點睛:該題考查的是有關三角形的問題,涉及到的知識點有正弦定理,誘導公式,和角公式,向量的平方即為向量模的平方,基本不等式,三角形的面積公式,在解題的過程中,需要正確使用相關的公式進行運算即可求得結(jié)果.20、(1)平均數(shù)為360,眾數(shù)為330;(2)見詳解;(3)甲公司:7020(元),乙公司:7281(元)【解析】
(1)將圖中甲公司員工A的所有數(shù)據(jù)相加,再除以總的天數(shù)10,即可求出甲公司員工A投遞快遞件數(shù)的平均數(shù).從中發(fā)現(xiàn)330出現(xiàn)的次數(shù)最多,故為眾數(shù);(2)由題意能求出的可能取值為340,360,370,420,440,分別求出相對應的概率,由此能求出的分布列和數(shù)學期望;(3)利用(1)(2)的結(jié)果,可估算兩公司的每位員工在該月所得的勞務費.【詳解】解:(1)由題意知甲公司員工在這10天投遞的快遞件數(shù)的平均數(shù)為.眾數(shù)為330.(2)設乙公司員工1天的投遞件數(shù)為隨機變量,則當時,當時,當時,當時,當時,的分布列為204219228273291(元);(3)由(1)估計甲公司被抽取員工在該月所得的勞務費為(元)由(2)估計乙公司被抽取員工在該月所得的勞務費為(元).【點睛】本題考查頻率分布表的應用,考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,是中檔題.21、(1)(2)【解析】試題分析:(1)因為AB⊥AC,A1B⊥平面ABC,所以以A為坐標原點,分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸建立空間直角坐標系,由AB=AC=A1B=2求出所要用到的點的坐標,求出棱
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- IT系統(tǒng)災難恢復與備份實戰(zhàn)指南
- 物流購銷合同
- 2025年成都駕??荚囏涍\從業(yè)資格證考試題庫
- 2025年韶關貨運從業(yè)資格證考試題目庫存答案
- 醫(yī)療設備維修保養(yǎng)合同書
- 2025年天津貨運從業(yè)資格證考試題庫答案解析
- 項目成果與經(jīng)驗教訓分享
- 關于產(chǎn)品發(fā)布決策的討論要點
- 廠家批量采購合同共
- 學校聘用保潔員合同
- 2025年華僑港澳臺學生聯(lián)招考試英語試卷試題(含答案詳解)
- 【語文大單元教學研究國內(nèi)外文獻綜述6400字】
- 做時間的主人課件- 高中時間管理主題班會
- 附件3.信息化項目建設方案論證審批報告書
- 小橋涵水文計算軟件
- 李德新中醫(yī)基礎理論講稿
- Photoshop圖像處理課件(完整版)
- 05844 全國 江蘇 自考國際商務英語課后習題答案 詳解
- 重慶道路交通事故認定書(簡易程序)樣本
- 2022年獸醫(yī)外科手術學作業(yè)題參考答案
- T∕CAMDI 009.1-2020 無菌醫(yī)療器械初包裝潔凈度 第1部分:微粒污染試驗方法 氣體吹脫法
評論
0/150
提交評論