2024屆北京市第171中學(xué)高三沖刺模擬數(shù)學(xué)試卷含解析_第1頁(yè)
2024屆北京市第171中學(xué)高三沖刺模擬數(shù)學(xué)試卷含解析_第2頁(yè)
2024屆北京市第171中學(xué)高三沖刺模擬數(shù)學(xué)試卷含解析_第3頁(yè)
2024屆北京市第171中學(xué)高三沖刺模擬數(shù)學(xué)試卷含解析_第4頁(yè)
2024屆北京市第171中學(xué)高三沖刺模擬數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆北京市第171中學(xué)高三沖刺模擬數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列中,則()A.10 B.16 C.20 D.242.己知函數(shù)若函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)有2對(duì),則實(shí)數(shù)的取值范圍是()A. B. C. D.3.已知斜率為的直線與雙曲線交于兩點(diǎn),若為線段中點(diǎn)且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B.3 C. D.4.在等差數(shù)列中,,,若(),則數(shù)列的最大值是()A. B.C.1 D.35.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.6.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.7.百年雙中的校訓(xùn)是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運(yùn)動(dòng)會(huì)中有這樣的一個(gè)小游戲.袋子中有大小、形狀完全相同的四個(gè)小球,分別寫(xiě)有“仁”、“智”、“雅”、“和”四個(gè)字,有放回地從中任意摸出一個(gè)小球,直到“仁”、“智”兩個(gè)字都摸到就停止摸球.小明同學(xué)用隨機(jī)模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機(jī)產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機(jī)數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下20組隨機(jī)數(shù):141432341342234142243331112322342241244431233214344142134412由此可以估計(jì),恰好第三次就停止摸球的概率為()A. B. C. D.8.已知雙曲線的離心率為,拋物線的焦點(diǎn)坐標(biāo)為,若,則雙曲線的漸近線方程為()A. B.C. D.9.若集合,則=()A. B. C. D.10.已知△ABC中,.點(diǎn)P為BC邊上的動(dòng)點(diǎn),則的最小值為()A.2 B. C. D.11.已知集合,,則()A. B. C. D.12.以下關(guān)于的命題,正確的是A.函數(shù)在區(qū)間上單調(diào)遞增B.直線需是函數(shù)圖象的一條對(duì)稱軸C.點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心D.將函數(shù)圖象向左平移需個(gè)單位,可得到的圖象二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線(,)的左,右焦點(diǎn)分別為,,過(guò)點(diǎn)的直線與雙曲線的左,右兩支分別交于,兩點(diǎn),若,,則雙曲線的離心率為_(kāi)_________.14.?dāng)?shù)列滿足遞推公式,且,則___________.15.已知函數(shù)與的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則的取值范圍為_(kāi)____.16.的展開(kāi)式中,的系數(shù)為_(kāi)______(用數(shù)字作答).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,四棱錐中,側(cè)面為等腰直角三角形,平面.(1)求證:平面;(2)求直線與平面所成的角的正弦值.18.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點(diǎn).(1)求證:平面平面;(2)點(diǎn)在線段上,且,求平面與平面所成的銳二面角的余弦值.19.(12分)已知x∈R,設(shè),,記函數(shù).(1)求函數(shù)取最小值時(shí)x的取值范圍;(2)設(shè)△ABC的角A,B,C所對(duì)的邊分別為a,b,c,若,,求△ABC的面積S的最大值.20.(12分)已知橢圓,點(diǎn)為半圓上一動(dòng)點(diǎn),若過(guò)作橢圓的兩切線分別交軸于、兩點(diǎn).(1)求證:;(2)當(dāng)時(shí),求的取值范圍.21.(12分)如圖中,為的中點(diǎn),,,.(1)求邊的長(zhǎng);(2)點(diǎn)在邊上,若是的角平分線,求的面積.22.(10分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知:,:,:.(1)求與的極坐標(biāo)方程(2)若與交于點(diǎn)A,與交于點(diǎn)B,,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

根據(jù)等差數(shù)列性質(zhì)得到,再計(jì)算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的??碱}型.2、B【解析】

考慮當(dāng)時(shí),有兩個(gè)不同的實(shí)數(shù)解,令,則有兩個(gè)不同的零點(diǎn),利用導(dǎo)數(shù)和零點(diǎn)存在定理可得實(shí)數(shù)的取值范圍.【詳解】因?yàn)榈膱D象上關(guān)于原點(diǎn)對(duì)稱的點(diǎn)有2對(duì),所以時(shí),有兩個(gè)不同的實(shí)數(shù)解.令,則在有兩個(gè)不同的零點(diǎn).又,當(dāng)時(shí),,故在上為增函數(shù),在上至多一個(gè)零點(diǎn),舍.當(dāng)時(shí),若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因?yàn)橛袃蓚€(gè)不同的零點(diǎn),所以,解得.又當(dāng)時(shí),且,故在上存在一個(gè)零點(diǎn).又,其中.令,則,當(dāng)時(shí),,故為減函數(shù),所以即.因?yàn)?,所以在上也存在一個(gè)零點(diǎn).綜上,當(dāng)時(shí),有兩個(gè)不同的零點(diǎn).故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),一般地,較為復(fù)雜的函數(shù)的零點(diǎn),必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)存在定理說(shuō)明零點(diǎn)的存在性,本題屬于難題.3、B【解析】

設(shè),代入雙曲線方程相減可得到直線的斜率與中點(diǎn)坐標(biāo)之間的關(guān)系,從而得到的等式,求出離心率.【詳解】,設(shè),則,兩式相減得,∴,.故選:B.【點(diǎn)睛】本題考查求雙曲線的離心率,解題方法是點(diǎn)差法,即出現(xiàn)雙曲線的弦中點(diǎn)坐標(biāo)時(shí),可設(shè)弦兩端點(diǎn)坐標(biāo)代入雙曲線方程相減后得出弦所在直線斜率與中點(diǎn)坐標(biāo)之間的關(guān)系.4、D【解析】

在等差數(shù)列中,利用已知可求得通項(xiàng)公式,進(jìn)而,借助函數(shù)的的單調(diào)性可知,當(dāng)時(shí),取最大即可求得結(jié)果.【詳解】因?yàn)椋?,即,又,所以公差,所以,即,因?yàn)楹瘮?shù),在時(shí),單調(diào)遞減,且;在時(shí),單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,考查數(shù)列與函數(shù)的關(guān)系,借助函數(shù)單調(diào)性研究數(shù)列最值問(wèn)題,難度較易.5、C【解析】

根據(jù)復(fù)數(shù)代數(shù)形式的運(yùn)算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的運(yùn)算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.6、D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實(shí)數(shù)的方程可得:.本題選擇D選項(xiàng).7、A【解析】

由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數(shù)比20即可得解.【詳解】由題意可知當(dāng)1,2同時(shí)出現(xiàn)時(shí)即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【點(diǎn)睛】本題考查了簡(jiǎn)單隨機(jī)抽樣中隨機(jī)數(shù)的應(yīng)用和古典概型概率的計(jì)算,屬于基礎(chǔ)題.8、A【解析】

求出拋物線的焦點(diǎn)坐標(biāo),得到雙曲線的離心率,然后求解a,b關(guān)系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點(diǎn)坐標(biāo)為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用.9、C【解析】

求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.10、D【解析】

以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,可得,設(shè),運(yùn)用向量的坐標(biāo)表示,求得點(diǎn)A的軌跡,進(jìn)而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時(shí),的最小值為.故選D.【點(diǎn)睛】本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運(yùn)算能力,屬于中檔題.11、B【解析】

求出集合,利用集合的基本運(yùn)算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵,屬于基礎(chǔ)題.12、D【解析】

利用輔助角公式化簡(jiǎn)函數(shù)得到,再逐項(xiàng)判斷正誤得到答案.【詳解】A選項(xiàng),函數(shù)先增后減,錯(cuò)誤B選項(xiàng),不是函數(shù)對(duì)稱軸,錯(cuò)誤C選項(xiàng),,不是對(duì)稱中心,錯(cuò)誤D選項(xiàng),圖象向左平移需個(gè)單位得到,正確故答案選D【點(diǎn)睛】本題考查了三角函數(shù)的單調(diào)性,對(duì)稱軸,對(duì)稱中心,平移,意在考查學(xué)生對(duì)于三角函數(shù)性質(zhì)的綜合應(yīng)用,其中化簡(jiǎn)三角函數(shù)是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),由雙曲線的定義得出:,由得為等腰三角形,設(shè),根據(jù),可求出,得出,再結(jié)合焦點(diǎn)三角形,利用余弦定理:求出和的關(guān)系,即可得出離心率.【詳解】解:設(shè),由雙曲線的定義得出:,,由圖可知:,又,即,則,為等腰三角形,,設(shè),,則,,即,解得:,則,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案為:.【點(diǎn)睛】本題考查雙曲線的定義的應(yīng)用,以及余弦定理的應(yīng)用,求雙曲線離心率.14、2020【解析】

可對(duì)左右兩端同乘以得,依次寫(xiě)出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點(diǎn)睛】本題考查數(shù)列遞推式和累加法的應(yīng)用,屬于基礎(chǔ)題15、【解析】

兩函數(shù)圖象上存在關(guān)于軸對(duì)稱的點(diǎn)的等價(jià)命題是方程在區(qū)間上有解,化簡(jiǎn)方程在區(qū)間上有解,構(gòu)造函數(shù),求導(dǎo),求出單調(diào)區(qū)間,利用函數(shù)性質(zhì)得解.【詳解】解:根據(jù)題意,若函數(shù)與的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則方程在區(qū)間上有解,即方程在區(qū)間上有解,設(shè)函數(shù),其導(dǎo)數(shù),又由,可得:當(dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù),故函數(shù)有最小值,又由;比較可得:,故函數(shù)有最大值,故函數(shù)在區(qū)間上的值域?yàn)?;若方程在區(qū)間上有解,必有,則有,即的取值范圍是;故答案為:;【點(diǎn)睛】本題利用導(dǎo)數(shù)研究函數(shù)在某區(qū)間上最值求參數(shù)的問(wèn)題,函數(shù)零點(diǎn)問(wèn)題的拓展.由于函數(shù)的零點(diǎn)就是方程的根,在研究方程的有關(guān)問(wèn)題時(shí),可以將方程問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題解決.此類問(wèn)題的切入點(diǎn)是借助函數(shù)的零點(diǎn),結(jié)合函數(shù)的圖象,采用數(shù)形結(jié)合思想加以解決.16、60【解析】

根據(jù)二項(xiàng)式定理展開(kāi)式通項(xiàng),即可求得的系數(shù).【詳解】因?yàn)?,所以,則所求項(xiàng)的系數(shù)為.故答案為:60【點(diǎn)睛】本題考查了二項(xiàng)展開(kāi)式通項(xiàng)公式的應(yīng)用,指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】

(1)根據(jù)平面,利用線面垂直的定義可得,再由,根據(jù)線面垂直的判定定理即可證出.(2)取的中點(diǎn),連接,以為坐標(biāo)原點(diǎn),分別為正半軸建立空間直角坐標(biāo)系求出平面的一個(gè)法向量,利用空間向量法即可求解.【詳解】因?yàn)槠矫嫫矫?,所以由為等腰直角三角形,所以又,故平?取的中點(diǎn),連接,因?yàn)?,所以因?yàn)槠矫?,所以平面所以平面如圖,以為坐標(biāo)原點(diǎn),分別為正半軸建立空間直角坐標(biāo)系則,又,所以且于是設(shè)平面的法向量為,則令得平面的一個(gè)法向量設(shè)直線與平面所成的角為,則【點(diǎn)睛】本題考查了線面垂直的定義、判定定理以及空間向量法求線面角,屬于中檔題.18、(1)見(jiàn)解析(2)【解析】

(1)根據(jù)等邊三角形的性質(zhì)證得,根據(jù)面面垂直的性質(zhì)定理,證得底面,由此證得,結(jié)合證得平面,由此證得:平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點(diǎn),∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標(biāo)系,則,,,由已知,得,設(shè)平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1);(2)【解析】

(1)先根據(jù)向量的數(shù)量積的運(yùn)算,以及二倍角公式和兩角和的正弦公式化簡(jiǎn)得到f(x)=,再根據(jù)正弦函數(shù)的性質(zhì)即可求出答案;(2)先求出C的大小,再根據(jù)余弦定理和基本不等式,即可求出,根據(jù)三角形的面積公式即可求出答案.【詳解】(1).令,k∈Z,即時(shí),,取最小值,所以,所求的取值集合是;(2)由,得,因?yàn)?,所以,所以?在中,由余弦定理,得,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以的面積,因此的面積的最大值為.【點(diǎn)睛】本題考查了向量的數(shù)量積的運(yùn)算和二倍角公式,兩角和的正弦公式,余弦定理和基本不等式,三角形的面積公式,屬于中檔題.20、(1)見(jiàn)解析;(2).【解析】

(1)分兩種情況討論:①兩切線、中有一條切線斜率不存在時(shí),求出兩切線的方程,驗(yàn)證結(jié)論成立;②兩切線、的斜率都存在,可設(shè)切線的方程為,將該直線的方程與橢圓的方程聯(lián)立,由可得出關(guān)于的二次方程,利用韋達(dá)定理得出兩切線的斜率之積為,進(jìn)而可得出結(jié)論;(2)求出點(diǎn)、的坐標(biāo),利用兩點(diǎn)間的距離公式結(jié)合韋達(dá)定理得出,換元,可得出,利用二次函數(shù)的基本性質(zhì)可求得的取值范圍.【詳解】(1)由于點(diǎn)在半圓上,則.①當(dāng)兩切線、中有一條切線斜率不存在時(shí),可求得兩切線方程為,或,,此時(shí);②當(dāng)兩切線、的斜率都存在時(shí),設(shè)切線的方程為(、的斜率分別為、),,,,.綜上所

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論