![對稱多項(xiàng)式高等代數(shù)_第1頁](http://file4.renrendoc.com/view5/M01/37/00/wKhkGGYgW3aAP5fcAAF_HDZXKOs440.jpg)
![對稱多項(xiàng)式高等代數(shù)_第2頁](http://file4.renrendoc.com/view5/M01/37/00/wKhkGGYgW3aAP5fcAAF_HDZXKOs4402.jpg)
![對稱多項(xiàng)式高等代數(shù)_第3頁](http://file4.renrendoc.com/view5/M01/37/00/wKhkGGYgW3aAP5fcAAF_HDZXKOs4403.jpg)
![對稱多項(xiàng)式高等代數(shù)_第4頁](http://file4.renrendoc.com/view5/M01/37/00/wKhkGGYgW3aAP5fcAAF_HDZXKOs4404.jpg)
![對稱多項(xiàng)式高等代數(shù)_第5頁](http://file4.renrendoc.com/view5/M01/37/00/wKhkGGYgW3aAP5fcAAF_HDZXKOs4405.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
§4最大公因式§5因式分解§6重因式§10多元多項(xiàng)式§11對稱多項(xiàng)式§3整除的概念§2一元多項(xiàng)式§1數(shù)域§7多項(xiàng)式函數(shù)§9有理系數(shù)多項(xiàng)式§8復(fù)、實(shí)系數(shù)多項(xiàng)式的因式分解第一章多項(xiàng)式一、一元多項(xiàng)式根與系數(shù)的關(guān)系二、n元對稱多項(xiàng)式§1.11對稱多項(xiàng)式三、一元多項(xiàng)式的判別式——韋達(dá)定理設(shè)①
若在上有個(gè)根,則②把②展開,與①比較,即得根與系數(shù)的關(guān)系:一、一元多項(xiàng)式根與系數(shù)的關(guān)系(所有可能的i個(gè)不同的的積之和),特別地,為其根,則有二、n
元對稱多項(xiàng)式定義設(shè),若對任意,有則稱該多項(xiàng)式為對稱多項(xiàng)式.
如,下列n個(gè)多項(xiàng)式稱為個(gè)未定元的初等對稱多項(xiàng)式.1.對稱多項(xiàng)式的和、積仍是對稱多項(xiàng)式;對稱多項(xiàng)式的多項(xiàng)式仍為對稱多項(xiàng)式.則是元對稱多項(xiàng)式.特別地,初等對稱多項(xiàng)式的多項(xiàng)式仍為對稱多項(xiàng)式.若為對稱多項(xiàng)式,為任一多項(xiàng)式,性質(zhì)即,2.對稱多項(xiàng)式基本定理對任一對稱多項(xiàng)式,都有n元多項(xiàng)式
,使得為初等對稱多項(xiàng)式.則必有作對稱多項(xiàng)式設(shè)對稱多項(xiàng)式按字典排列法的首項(xiàng)為證明:再作對稱多項(xiàng)式則的首項(xiàng)為則有比較“小”的首項(xiàng).對重復(fù)上述作法,并依此下去.即有一系列對稱多項(xiàng)式它們的首項(xiàng)一個(gè)比一個(gè)“小”,所以必終此在有限步..故存在,使于是這就是一個(gè)初等對稱多項(xiàng)式的多項(xiàng)式.上述證明過程實(shí)際上是逐步消去首項(xiàng).逐步消去首項(xiàng)法的一般步驟:則一定有第一步:找出對稱多項(xiàng)式f的首項(xiàng)
,第二步:由
f
的首項(xiàng)寫出
:說明確定它對應(yīng)的指數(shù)組
第三步:作,并展開化簡.如此反復(fù)進(jìn)行,直到出現(xiàn),則再對按一、二、三步驟進(jìn)行,構(gòu)造例1.把多項(xiàng)式f表成初等對稱多項(xiàng)式的多項(xiàng)式,令的首項(xiàng)是解:作對稱多項(xiàng)式它所對應(yīng)的指數(shù)組是它所對應(yīng)的數(shù)組是f的首項(xiàng)是
令作對稱多項(xiàng)式所以,令于是對于齊次對稱多項(xiàng)式還可以采用待定系數(shù)法.(設(shè)f是m次齊次對稱多項(xiàng)式)第一步:根據(jù)對稱多項(xiàng)式f首項(xiàng)對應(yīng)的指數(shù)組寫出所有可能的指數(shù)組,且這些指數(shù)組滿足:③前面的指數(shù)組先于后面的指數(shù)組.①②附:待定系數(shù)法的一般步驟:的初等對稱多項(xiàng)式的方冪的乘積:第二步:對每個(gè)指數(shù)組,寫出它對應(yīng)第三步:設(shè)出f
由所有初等對稱多項(xiàng)式的方冪乘積的線性表達(dá)式,其首項(xiàng)系數(shù)即為f
的首項(xiàng)系數(shù),其余各項(xiàng)系數(shù)分別用A、B、C、…代替.第四步:分組選取適當(dāng)?shù)牡闹?,?jì)
算出
及f,性表達(dá)式中,得到關(guān)于A、B、C、…的線性方程組,解這個(gè)線性方程組求得A、B、C、…的值.最后寫出所求的f的表達(dá)式.將之代入第三步中設(shè)出的線例2用待定系數(shù)法把表成初等對稱多項(xiàng)式的多項(xiàng)式.所有不先于的三次指數(shù)組及相應(yīng)的初等對稱解:它所對應(yīng)的數(shù)組是f的首項(xiàng)是多項(xiàng)式方冪的乘積如下表:指數(shù)組
相應(yīng)的初等對稱多項(xiàng)式方冪的乘積這樣,f可表成(1)及f的值如下表:適當(dāng)選取的值,計(jì)算出11133131102102代入(1)式得解之得,所以三、一元多項(xiàng)式的判別式有特殊的重要性.按對稱多項(xiàng)式基本定理知,對稱多項(xiàng)式D可表成由根與系數(shù)的關(guān)系知,的多項(xiàng)式是(2)的根,則多項(xiàng)(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個(gè)人名下車輛抵押借款合同范文
- 2025年公共場所消防設(shè)計(jì)與施工協(xié)議
- 2025年企業(yè)租賃生產(chǎn)區(qū)域安全策劃管理協(xié)議
- 2025年玻璃冷加工設(shè)備項(xiàng)目提案報(bào)告模板
- 2025年個(gè)人信用借款合同保證書
- 2025年車載型X螢光測試儀(XRF)項(xiàng)目立項(xiàng)申請報(bào)告
- 2025年圖像存儲與通訊系統(tǒng)(PACS)項(xiàng)目立項(xiàng)申請報(bào)告模范
- 2025年分手協(xié)議標(biāo)準(zhǔn)化簡易版指南
- 2025年園林景觀石申請銷售合作協(xié)議
- 2025年伴侶保障協(xié)議
- 公文與公文寫作課件
- 車削成形面和表面修飾加工課件
- 讀書分享-《教育的情調(diào)》
- 基于振動(dòng)信號的齒輪故障診斷方法研究
- 義務(wù)教育物理課程標(biāo)準(zhǔn)(2022年版word版)
- 醫(yī)療器械分類目錄2002版
- DB11_T1713-2020 城市綜合管廊工程資料管理規(guī)程
- 氣管套管滑脫急救知識分享
- 特種設(shè)備自檢自查表
- 省政府審批單獨(dú)選址項(xiàng)目用地市級審查報(bào)告文本格式
- 往復(fù)式壓縮機(jī)安裝方案
評論
0/150
提交評論