版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆廣東省廣州市越秀區(qū)高考適應(yīng)性考試數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線的焦點(diǎn)為,對(duì)稱軸與準(zhǔn)線的交點(diǎn)為,為上任意一點(diǎn),若,則()A.30° B.45° C.60° D.75°2.復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限3.如圖所示的程序框圖,當(dāng)其運(yùn)行結(jié)果為31時(shí),則圖中判斷框①處應(yīng)填入的是()A. B. C. D.4.已知函數(shù),則在上不單調(diào)的一個(gè)充分不必要條件可以是()A. B. C.或 D.5.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學(xué)家畢達(dá)哥拉斯公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28不在同一組的概率為()A. B. C. D.6.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.87.雙曲線:(),左焦點(diǎn)到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.8.已知,為兩條不同直線,,,為三個(gè)不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號(hào)為()A.②③ B.②③④ C.①④ D.①②③9.已知函數(shù)的圖象與直線的相鄰交點(diǎn)間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.10.展開項(xiàng)中的常數(shù)項(xiàng)為A.1 B.11 C.-19 D.5111.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.12.已知函數(shù),,則的極大值點(diǎn)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是函數(shù)的極大值點(diǎn),則的取值范圍是____________.14.如圖,是一個(gè)四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,則此四棱錐的體積為_____.15.已知正項(xiàng)等比數(shù)列中,,則__________.16.的角所對(duì)的邊分別為,且,,若,則的值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角的對(duì)邊分別是,已知.(1)求角的值;(2)若,,求的面積.18.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.19.(12分)如圖,已知在三棱錐中,平面,分別為的中點(diǎn),且.(1)求證:;(2)設(shè)平面與交于點(diǎn),求證:為的中點(diǎn).20.(12分)如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時(shí),求二面角的余弦值.21.(12分)已知,,分別為內(nèi)角,,的對(duì)邊,且.(1)證明:;(2)若的面積,,求角.22.(10分)已知?jiǎng)訄AQ經(jīng)過定點(diǎn),且與定直線相切(其中a為常數(shù),且).記動(dòng)圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設(shè)點(diǎn)P的坐標(biāo)為,過點(diǎn)P作曲線C的切線,切點(diǎn)為A,若過點(diǎn)P的直線m與曲線C交于M,N兩點(diǎn),則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請(qǐng)說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,故,得到答案.【詳解】如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,在中,,故,即.故選:.【點(diǎn)睛】本題考查了拋物線中角度的計(jì)算,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.2、C【解析】
由復(fù)數(shù)除法求出,寫出共軛復(fù)數(shù),寫出共軛復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)即得【詳解】解析:,,對(duì)應(yīng)點(diǎn)為,在第三象限.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,共軛復(fù)數(shù)的概念,復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)除法法則是解題關(guān)鍵.3、C【解析】
根據(jù)程序框圖的運(yùn)行,循環(huán)算出當(dāng)時(shí),結(jié)束運(yùn)行,總結(jié)分析即可得出答案.【詳解】由題可知,程序框圖的運(yùn)行結(jié)果為31,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.此時(shí)輸出.故選:C.【點(diǎn)睛】本題考查根據(jù)程序框圖的循環(huán)結(jié)構(gòu),已知輸出結(jié)果求條件框,屬于基礎(chǔ)題.4、D【解析】
先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結(jié)論.【詳解】,若在上不單調(diào),令,則函數(shù)對(duì)稱軸方程為在區(qū)間上有零點(diǎn)(可以用二分法求得).當(dāng)時(shí),顯然不成立;當(dāng)時(shí),只需或,解得或.故選:D.【點(diǎn)睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點(diǎn)的求法,屬于中檔題.5、C【解析】
先求出五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè)的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個(gè)數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28不在同一組的概率.故選:C.【點(diǎn)睛】本題考查古典概型的概率的求法,涉及實(shí)際問題中組合數(shù)的應(yīng)用.6、A【解析】
依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題.7、B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點(diǎn)到漸近線的距離為2,列方程即可求出,進(jìn)而求出漸近線的方程.【詳解】設(shè)左焦點(diǎn)為,一條漸近線的方程為,由左焦點(diǎn)到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點(diǎn)睛】本題考查雙曲線的漸近線的方程,考查了點(diǎn)到直線的距離公式,屬于中檔題.8、C【解析】
根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯(cuò)誤;若,,則可能平行,故③錯(cuò)誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點(diǎn)睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.9、A【解析】
由題知,利用求出,再根據(jù)題給定義,化簡求出的解析式,結(jié)合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點(diǎn)間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【點(diǎn)睛】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關(guān)鍵是對(duì)新定義的理解.10、B【解析】
展開式中的每一項(xiàng)是由每個(gè)括號(hào)中各出一項(xiàng)組成的,所以可分成三種情況.【詳解】展開式中的項(xiàng)為常數(shù)項(xiàng),有3種情況:(1)5個(gè)括號(hào)都出1,即;(2)兩個(gè)括號(hào)出,兩個(gè)括號(hào)出,一個(gè)括號(hào)出1,即;(3)一個(gè)括號(hào)出,一個(gè)括號(hào)出,三個(gè)括號(hào)出1,即;所以展開項(xiàng)中的常數(shù)項(xiàng)為,故選B.【點(diǎn)睛】本題考查二項(xiàng)式定理知識(shí)的生成過程,考查定理的本質(zhì),即展開式中每一項(xiàng)是由每個(gè)括號(hào)各出一項(xiàng)相乘組合而成的.11、D【解析】
先用復(fù)數(shù)的除法運(yùn)算將復(fù)數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的基本概念和基本運(yùn)算,屬于基礎(chǔ)題.12、A【解析】
求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點(diǎn)即可.【詳解】因?yàn)?,故可得,令,因?yàn)?,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點(diǎn)為.故選:A.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點(diǎn),屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴在上單調(diào)遞增,時(shí),,,且,∴在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),由知須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得.14、【解析】
畫圖直觀圖可得該幾何體為棱錐,再計(jì)算高求解體積即可.【詳解】解:如圖,是一個(gè)四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,此四棱錐中,是邊長為的正方形,是邊長為的等邊三角形,故,又,故平面平面,的高是四棱錐的高,此四棱錐的體積為:.故答案為:.【點(diǎn)睛】本題主要考查了四棱錐中的長度計(jì)算以及垂直的判定和體積計(jì)算等,需要根據(jù)題意15、【解析】
利用等比數(shù)列的通項(xiàng)公式將已知兩式作商,可得,再利用等比數(shù)列的性質(zhì)可得,再利用等比數(shù)列的通項(xiàng)公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式以及等比中項(xiàng),需熟記公式,屬于基礎(chǔ)題.16、【解析】
先利用余弦定理求出,再用正弦定理求出并把轉(zhuǎn)化為與邊有關(guān)的等式,結(jié)合可求的值.【詳解】因?yàn)?,故,因?yàn)?,所?由正弦定理可得三角形外接圓的半徑滿足,所以即.因?yàn)椋獾没颍ㄉ幔?故答案為:.【點(diǎn)睛】本題考查正弦定理、余弦定理在解三角形中的應(yīng)用,注意結(jié)合求解目標(biāo)對(duì)所得的方程組變形整合后整體求解,本題屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由已知條件和正弦定理進(jìn)行邊角互化得,再根據(jù)余弦定理可求得值.(2)由正弦定理得,,代入得,運(yùn)用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設(shè)外接圓的半徑為,則由正弦定理得,,,.【點(diǎn)睛】本題考查運(yùn)用三角形的正弦定理、余弦定理、三角形的面積公式,關(guān)鍵在于熟練地運(yùn)用其公式,合理地選擇進(jìn)行邊角互化,屬于基礎(chǔ)題.18、.【解析】試題分析:,所以.試題解析:B.因?yàn)?,所以?9、(1)證明見解析;(2)證明見解析.【解析】
(1)要做證明,只需證明平面即可;(2)易得∥平面,平面,利用線面平行的性質(zhì)定理即可得到∥,從而獲得證明【詳解】證明:(1)因?yàn)槠矫?,平面,所?因?yàn)椋?又因?yàn)?,平面,平面,所以平?又因?yàn)槠矫妫?(2)因?yàn)槠矫媾c交于點(diǎn),所以平面.因?yàn)榉謩e為的中點(diǎn),所以∥.又因?yàn)槠矫?,平面,所以∥平?又因?yàn)槠矫?,平面平面,所以∥,又因?yàn)槭堑闹悬c(diǎn),所以為的中點(diǎn).【點(diǎn)睛】本題考查線面垂直的判定定理以及線面平行的性質(zhì)定理,考查學(xué)生的邏輯推理能力,是一道容易題.20、(1)見解析(2)【解析】
(1)利用面面垂直的性質(zhì)定理證得平面,由此證得,根據(jù)圓的幾何性質(zhì)證得,由此證得平面.(2)判斷出三棱錐的體積最大時(shí)點(diǎn)的位置.建立空間直角坐標(biāo)系,通過平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)證明:因?yàn)槠矫嫫矫媸钦叫?,所以平?因?yàn)槠矫?,所?因?yàn)辄c(diǎn)在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當(dāng)點(diǎn)位于的中點(diǎn)時(shí),的面積最大,三棱錐的體積也最大.不妨設(shè),記中點(diǎn)為,以為原點(diǎn),分別以的方向?yàn)檩S、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則令,得.設(shè)平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點(diǎn)睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)見解析;(2)【解析】
(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結(jié)論,得到,利用三角形的面積公式列方程,由此求得,進(jìn)而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【點(diǎn)睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,屬于中檔題.22、(1),拋物線;(2)存在,.【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園元旦匯演活動(dòng)方案4篇
- 2024秋七年級(jí)數(shù)學(xué)上冊(cè) 第四章 幾何圖形初步4.2 直線、射線、線段 2線段的大小教學(xué)思路(新版)新人教版
- 2024年虛擬現(xiàn)實(shí)設(shè)備采購合同
- 文字計(jì)算題(教學(xué)實(shí)錄)-2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué)滬教版
- 二年級(jí)品德與生活上冊(cè) 3.3 做個(gè)快樂鳥4教學(xué)思路 新人教版
- 音樂教學(xué)工作計(jì)劃2023年(7篇)
- 我有一個(gè)夢(mèng)想演講稿500字
- 26方帽子店j教學(xué)實(shí)錄-2023-2024學(xué)年三年級(jí)下冊(cè)語文統(tǒng)編版
- 公司年度個(gè)人工作總結(jié)簡短
- 山東省淄博市臨淄區(qū)皇城鎮(zhèn)第二中學(xué)初中體育《籃球》教學(xué)實(shí)錄 新人教版
- 解除限制消費(fèi)申請(qǐng)書
- 預(yù)制箱梁常見問題以及處理方案
- 《建筑施工現(xiàn)場(chǎng)環(huán)境與衛(wèi)生標(biāo)準(zhǔn)》(JGJ146)
- 安徽省中小型水利工程施工監(jiān)理導(dǎo)則
- 標(biāo)準(zhǔn)鋼號(hào)和中國鋼號(hào)對(duì)照表.doc
- 汽車整車廠和動(dòng)力總成廠房火災(zāi)危險(xiǎn)性分類
- 7實(shí)用衛(wèi)生統(tǒng)計(jì)學(xué)總-國家開放大學(xué)2022年1月期末考試復(fù)習(xí)資料-護(hù)理本復(fù)習(xí)資料
- 制漿造紙廠樹脂沉積的機(jī)理及其控制_圖文
- 單片機(jī)倒計(jì)時(shí)秒表課程設(shè)計(jì)報(bào)告書
- 某銀行裝飾裝修工程施工進(jìn)度計(jì)劃表
- 六年級(jí)分?jǐn)?shù)乘法簡便運(yùn)算練習(xí)題
評(píng)論
0/150
提交評(píng)論