版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省紹興市嵊州市重點中學2024屆中考考前最后一卷數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AB∥CD,點E在線段BC上,CD=CE,若∠ABC=30°,則∠D為()A.85° B.75° C.60° D.30°2.如圖,一束平行太陽光線FA、GB照射到正五邊形ABCDE上,∠ABG=46°,則∠FAE的度數(shù)是()A.26°. B.44°. C.46°. D.72°3.已知方程x2﹣x﹣2=0的兩個實數(shù)根為x1、x2,則代數(shù)式x1+x2+x1x2的值為()A.﹣3 B.1 C.3 D.﹣14.計算(﹣5)﹣(﹣3)的結(jié)果等于()A.﹣8B.8C.﹣2D.25.如圖,以∠AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D.再分別以點C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點E,過點E作射線OE,連接CD.則下列說法錯誤的是A.射線OE是∠AOB的平分線B.△COD是等腰三角形C.C、D兩點關(guān)于OE所在直線對稱D.O、E兩點關(guān)于CD所在直線對稱6.已知直線與直線的交點在第一象限,則的取值范圍是()A. B. C. D.7.如圖,A、B兩點在雙曲線y=上,分別經(jīng)過A、B兩點向軸作垂線段,已知S陰影=1,則S1+S2=()A.3 B.4 C.5 D.68.的相反數(shù)是()A. B.- C. D.-9.某籃球運動員在連續(xù)7場比賽中的得分(單位:分)依次為20,18,23,17,20,20,18,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分10.如圖,小明從A處出發(fā)沿北偏西30°方向行走至B處,又沿南偏西50°方向行走至C處,此時再沿與出發(fā)時一致的方向行走至D處,則∠BCD的度數(shù)為()A.100° B.80° C.50° D.20°11.下列圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.12.下列各數(shù)中是無理數(shù)的是()A.cos60° B. C.半徑為1cm的圓周長 D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點A是直線y=﹣x與反比例函數(shù)y=的圖象在第二象限內(nèi)的交點,OA=4,則k的值為_____.14.若正六邊形的內(nèi)切圓半徑為2,則其外接圓半徑為__________.15.從﹣2,﹣1,2這三個數(shù)中任取兩個不同的數(shù)相乘,積為正數(shù)的概率是_____.16.我國古代數(shù)學著作《九章算術(shù)》卷七有下列問題:“今有共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價幾何?”意思是:現(xiàn)在有幾個人共同出錢去買件物品,如果每人出8錢,則剩余3錢;如果每人出7錢,則差4錢.問有多少人,物品的價格是多少?設(shè)有人,則可列方程為__________.17.某廣場要做一個由若干盆花組成的形如正六邊形的花壇,每條邊(包括兩個頂點)有n(n>1)盆花,設(shè)這個花壇邊上的花盆的總數(shù)為S,請觀察圖中的規(guī)律:按上規(guī)律推斷,S與n的關(guān)系是________________________________.18.使有意義的的取值范圍是__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)小王上周五在股市以收盤價(收市時的價格)每股25元買進某公司股票1000股,在接下來的一周交易日內(nèi),小王記下該股票每日收盤價格相比前一天的漲跌情況:(單位:元)星期一二三四五每股漲跌(元)+2﹣1.4+0.9﹣1.8+0.5根據(jù)上表回答問題:(1)星期二收盤時,該股票每股多少元?(2)周內(nèi)該股票收盤時的最高價,最低價分別是多少?(3)已知買入股票與賣出股票均需支付成交金額的千分之五的交易費.若小王在本周五以收盤價將全部股票賣出,他的收益情況如何?20.(6分)如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點O,交BC于點E,AD∥BC,連接CD.(1)求證:AO=EO;(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結(jié)論.21.(6分)(1)計算:;(2)化簡:.22.(8分)在一個不透明的布袋中裝兩個紅球和一個白球,這些球除顏色外均相同(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是.(2)甲、乙、丙三人依次從袋中摸出一個球,記錄顏色后不放回,試求出乙摸到白球的概率23.(8分)(1)解方程:.(2)解不等式組:24.(10分)某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:(1)若設(shè)每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?25.(10分)已知拋物線y=﹣x2﹣4x+c經(jīng)過點A(2,0).(1)求拋物線的解析式和頂點坐標;(2)若點B(m,n)是拋物線上的一動點,點B關(guān)于原點的對稱點為C.①若B、C都在拋物線上,求m的值;②若點C在第四象限,當AC2的值最小時,求m的值.26.(12分)平面直角坐標系中(如圖),已知拋物線經(jīng)過點和,與y軸相交于點C,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)點E在拋物線的對稱軸上,且,求點E的坐標;(3)在(2)的條件下,記拋物線的對稱軸為直線MN,點Q在直線MN右側(cè)的拋物線上,,求點Q的坐標.27.(12分)先化簡÷(x-),然后從-<x<的范圍內(nèi)選取一個合適的正整數(shù)作為x的值代入求值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根據(jù)三角形內(nèi)角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,從而求出∠D.詳解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故選B.點睛:此題考查的是平行線的性質(zhì)及三角形內(nèi)角和定理,解題的關(guān)鍵是先根據(jù)平行線的性質(zhì)求出∠C,再由CD=CE得出∠D=∠CED,由三角形內(nèi)角和定理求出∠D.2、A【解析】
先根據(jù)正五邊形的性質(zhì)求出∠EAB的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:∵圖中是正五邊形.∴∠EAB=108°.∵太陽光線互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故選A.【點睛】此題考查平行線的性質(zhì),多邊形內(nèi)角與外角,解題關(guān)鍵在于求出∠EAB.3、D【解析】分析:根據(jù)一元二次方程根與系數(shù)的關(guān)系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2計算即可.詳解:由題意得,a=1,b=-1,c=-2,∴,,∴x1+x2+x1x2=1+(-2)=-1.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)的關(guān)系,若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關(guān)系式:,.4、C【解析】分析:減去一個數(shù),等于加上這個數(shù)的相反數(shù).依此計算即可求解.詳解:(-5)-(-3)=-1.故選:C.點睛:考查了有理數(shù)的減法,方法指引:①在進行減法運算時,首先弄清減數(shù)的符號;②將有理數(shù)轉(zhuǎn)化為加法時,要同時改變兩個符號:一是運算符號(減號變加號);二是減數(shù)的性質(zhì)符號(減數(shù)變相反數(shù)).5、D【解析】試題分析:A、連接CE、DE,根據(jù)作圖得到OC=OD,CE=DE.∵在△EOC與△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意.B、根據(jù)作圖得到OC=OD,∴△COD是等腰三角形,正確,不符合題意.C、根據(jù)作圖得到OC=OD,又∵射線OE平分∠AOB,∴OE是CD的垂直平分線.∴C、D兩點關(guān)于OE所在直線對稱,正確,不符合題意.D、根據(jù)作圖不能得出CD平分OE,∴CD不是OE的平分線,∴O、E兩點關(guān)于CD所在直線不對稱,錯誤,符合題意.故選D.6、C【解析】
根據(jù)題意畫出圖形,利用數(shù)形結(jié)合,即可得出答案.【詳解】根據(jù)題意,畫出圖形,如圖:當時,兩條直線無交點;當時,兩條直線的交點在第一象限.故選:C.【點睛】本題主要考查兩個一次函數(shù)的交點問題,能夠數(shù)形結(jié)合是解題的關(guān)鍵.7、D【解析】
欲求S1+S1,只要求出過A、B兩點向x軸、y軸作垂線段與坐標軸所形成的矩形的面積即可,而矩形面積為雙曲線y=的系數(shù)k,由此即可求出S1+S1.【詳解】∵點A、B是雙曲線y=上的點,分別經(jīng)過A、B兩點向x軸、y軸作垂線段,
則根據(jù)反比例函數(shù)的圖象的性質(zhì)得兩個矩形的面積都等于|k|=4,
∴S1+S1=4+4-1×1=2.
故選D.8、B【解析】∵+(﹣)=0,∴的相反數(shù)是﹣.故選B.9、D【解析】分析:根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).詳解:將數(shù)據(jù)重新排列為17、18、18、20、20、20、23,所以這組數(shù)據(jù)的眾數(shù)為20分、中位數(shù)為20分,故選:D.點睛:本題考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).10、B【解析】解:如圖所示:由題意可得:∠1=30°,∠3=50°,則∠2=30°,故由DC∥AB,則∠4=30°+50°=80°.故選B.點睛:此題主要考查了方向角的定義,正確把握定義得出∠3的度數(shù)是解題關(guān)鍵.11、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;
B、是軸對稱圖形,也是中心對稱圖形,故此選項正確;
C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;
D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.
故選B.【點睛】考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.12、C【解析】分析:根據(jù)“無理數(shù)”的定義進行判斷即可.詳解:A選項中,因為,所以A選項中的數(shù)是有理數(shù),不能選A;B選項中,因為是無限循環(huán)小數(shù),屬于有理數(shù),所以不能選B;C選項中,因為半徑為1cm的圓的周長是cm,是個無理數(shù),所以可以選C;D選項中,因為,2是有理數(shù),所以不能選D.故選.C.點睛:正確理解無理數(shù)的定義:“無限不循環(huán)小數(shù)叫做無理數(shù)”是解答本題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、﹣4.【解析】
作AN⊥x軸于N,可設(shè)A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.【詳解】解:作AN⊥x軸于N,如圖所示:∵點A是直線y=﹣x與反比例函數(shù)y=的圖象在第二象限內(nèi)的交點,∴可設(shè)A(x,﹣x)(x<0),在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,解得:x=﹣2,∴A(﹣2,2),代入y=得:k=﹣2×2=﹣4;故答案為﹣4.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的圖象得交點、勾股定理、反比例函數(shù)解析式的求法;求出點A的坐標是解決問題的關(guān)鍵.14、【解析】
根據(jù)題意畫出草圖,可得OG=2,,因此利用三角函數(shù)便可計算的外接圓半徑OA.【詳解】解:如圖,連接、,作于;則,∵六邊形正六邊形,∴是等邊三角形,∴,∴,∴正六邊形的內(nèi)切圓半徑為2,則其外接圓半徑為.故答案為.【點睛】本題主要考查多邊形的內(nèi)接圓和外接圓,關(guān)鍵在于根據(jù)題意畫出草圖,再根據(jù)三角函數(shù)求解,這是多邊形問題的解題思路.15、【解析】
首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結(jié)果與積為正數(shù)的情況,再利用概率公式求解即可求得答案.【詳解】列表如下:﹣2﹣12﹣22﹣4﹣12﹣22﹣4﹣2由表可知,共有6種等可能結(jié)果,其中積為正數(shù)的有2種結(jié)果,所以積為正數(shù)的概率為,故答案為.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.16、【解析】
根據(jù)每人出8錢,則剩余3錢;如果每人出7錢,則差4錢,可以列出相應(yīng)的方程,本題得以解決【詳解】解:由題意可設(shè)有人,列出方程:故答案為【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程.17、S=1n-1【解析】觀察可得,n=2時,S=1;
n=3時,S=1+(3-2)×1=12;
n=4時,S=1+(4-2)×1=18;
…;
所以,S與n的關(guān)系是:S=1+(n-2)×1=1n-1.
故答案為S=1n-1.【點睛】本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.18、【解析】
根據(jù)二次根式的被開方數(shù)為非負數(shù)求解即可.【詳解】由題意可得:,解得:.所以答案為.【點睛】本題主要考查了二次根式的性質(zhì),熟練掌握相關(guān)概念是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)25.6元;(2)收盤最高價為27元/股,收盤最低價為24.7元/股;(3)-51元,虧損51元.【解析】試題分析:(1)根據(jù)有理數(shù)的加減法的運算方法,求出星期二收盤時,該股票每股多少元即可.(2)這一周內(nèi)該股票星期一的收盤價最高,星期四的收盤價最低.(3)用本周五以收盤價將全部股票賣出后得到的錢數(shù)減去買入股票與賣出股票均需支付的交易費,判斷出他的收益情況如何即可.試題解析:(1)星期二收盤價為25+2?1.4=25.6(元/股)答:該股票每股25.6元.(2)收盤最高價為25+2=27(元/股)收盤最低價為25+2?1.45+0.9?1.8=24.7(元/股)答:收盤最高價為27元/股,收盤最低價為24.7元/股.(3)(25.2-25)×1000-5‰×1000×(25.2+25)=200-251=-51(元)答:小王的本次收益為-51元.20、(1)詳見解析;(2)平行四邊形.【解析】
(1)由“三線合一”定理即可得到結(jié)論;
(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根據(jù)垂直平分線的性質(zhì)有AB=BE,于是AD=BE,進而得到AD=EC,根據(jù)平行四邊形的判定即可得到結(jié)論.【詳解】證明:(1)∵BD平分∠ABC,AE⊥BD,∴AO=EO;(2)平行四邊形,證明:∵AD∥BC,∴∠ADB=∠ABD,∴AD=AB,∵OA=OE,OB⊥AE,∴AB=BE,∴AD=BE,∵BE=CE,∴AD=EC,∴四邊形AECD是平行四邊形.【點睛】考查等腰直角三角形的性質(zhì)以及平行四邊形的判定,掌握平行四邊形的判定方法是解題的關(guān)鍵.21、(1)4+;(2).【解析】
(1)根據(jù)冪的乘方、零指數(shù)冪、特殊角的三角函數(shù)值和絕對值可以解答本題;(3)根據(jù)分式的減法和除法可以解答本題.【詳解】(1)=4+1+|1﹣2×|=4+1+|1﹣|=4+1+﹣1=4+;(2)===.【點睛】本題考查分式的混合運算、實數(shù)的運算、零指數(shù)冪、特殊角的三角函數(shù)值和絕對值,解答本題的關(guān)鍵是明確它們各自的計算方法.22、(1);(2).【解析】
(1)直接利用概率公式求解;
(2)畫樹狀圖展示所有6種等可能的結(jié)果數(shù),再找出乙摸到白球的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是;
故答案為:;
(2)畫樹狀圖為:
共有6種等可能的結(jié)果數(shù),其中乙摸到白球的結(jié)果數(shù)為2,
所以乙摸到白球的概率==.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.23、(1)無解;(1)﹣1<x≤1.【解析】
(1)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解;(1)分別求出不等式組中兩不等式的解集,找出兩解集的公共部分即可.【詳解】(1)去分母得:1﹣x+1=﹣3x+6,解得:x=1,經(jīng)檢驗x=1是增根,分式方程無解;(1),由①得:x>﹣1,由②得:x≤1,則不等式組的解集為﹣1<x≤1.【點睛】此題考查了解分式方程,利用了轉(zhuǎn)化的思想,解分式方程注意要檢驗.24、(1)0≤x<20;(2)降價2.5元時,最大利潤是6125元【解析】
(1)根據(jù)“總利潤=單件利潤×銷售量”列出函數(shù)解析式,由“確保盈利”可得x的取值范圍.
(2)將所得函數(shù)解析式配方成頂點式可得最大值.【詳解】(1)根據(jù)題意得y=(70?x?50)(300+20x)=?20x2+100x+6000,∵70?x?50>0,且x≥0,∴0≤x<20.(2)∵y=?20x2+100x+6000=?20(x?)2+6125,∴當x=時,y取得最大值,最大值為6125,答:當降價2.5元時,每星期的利潤最大,最大利潤是6125元.【點睛】本題考查的知識點是二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應(yīng)用.25、(1)拋物線解析式為y=﹣x2﹣4x+12,頂點坐標為(﹣2,16);(2)①m=2或m=﹣2;②m的值為.【解析】分析:(1)把點A(2,0)代入拋物線y=﹣x2﹣4x+c中求得c的值,即可得拋物線的解析式,根據(jù)拋物線的解析式求得拋物線的頂點坐標即可;(2)①由B(m,n)在拋物線上可得﹣m2﹣4m+12=n,再由點B關(guān)于原點的對稱點為C,可得點C的坐標為(﹣m,﹣n),又因C落在拋物線上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知點C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由拋物線頂點坐標為(﹣2,16),即可得0<n≤16,因為點B在拋物線上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以當n=時,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可確定m的值.詳解:(1)∵拋物線y=﹣x2﹣4x+c經(jīng)過點A(2,0),∴﹣4﹣8+c=0,即c=12,∴拋物線解析式為y=﹣x2﹣4x+12=﹣(x+2)2+16,則頂點坐標為(﹣2,16);(2)①由B(m,n)在拋物線上可得:﹣m2﹣4m+12=n,∵點B關(guān)于原點的對稱點為C,∴C(﹣m,﹣n),∵C落在拋物線上,∴﹣m2+4m+12
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消防設(shè)施招投標合同
- 大型場館建設(shè)合同樣式
- 食品加工三方施工合同
- 機場VIP室花卉租用協(xié)議
- 劇院清潔工招聘協(xié)議書
- 兒童玩具專賣店裝修施工合同
- 游艇碼頭建造師合同模板
- 豪華郵輪廚師長聘用合同
- 地鐵站雨污治理工程協(xié)議
- 服裝店財務(wù)人員勞動合同
- 基于Web的高校教材管理系統(tǒng)的設(shè)計與開發(fā)
- 養(yǎng)生餐廳調(diào)查研究報告
- 臨床醫(yī)學研究進展展望新興領(lǐng)域與發(fā)展趨勢培訓課件
- 北京市2022-2023學年三年級上學期語文期末試卷(含答案)2
- 2023-2024年三年級上冊科學(教科版) 期末模擬試卷(三)(含解析)
- 消防爬梯施工方案
- 關(guān)于工程師思維素養(yǎng)課件
- 昆蟲記32種昆蟲簡介
- 短視頻平臺私域建設(shè)研究報告
- 工業(yè)風扇-專業(yè)介紹
- 23秋國家開放大學《廣告設(shè)計》形考任務(wù)1-4參考答案
評論
0/150
提交評論