版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省鹽城市大豐區(qū)大豐區(qū)萬盈鎮(zhèn)沈灶初級(jí)中學(xué)2024年中考數(shù)學(xué)押題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時(shí)間的函數(shù)圖形如圖所示,下列說法正確的有()①快車追上慢車需6小時(shí);②慢車比快車早出發(fā)2小時(shí);③快車速度為46km/h;④慢車速度為46km/h;⑤A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時(shí)A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)2.由一些大小相同的小正方形搭成的幾何體的左視圖和俯視圖,如圖所示,則搭成該幾何體的小正方形的個(gè)數(shù)最少是()A.4 B.5 C.6 D.73.如圖,圓O是等邊三角形內(nèi)切圓,則∠BOC的度數(shù)是()A.60° B.100° C.110° D.120°4.第四屆濟(jì)南國(guó)際旅游節(jié)期間,全市共接待游客686000人次.將686000用科學(xué)記數(shù)法表示為()A.686×104B.68.6×105C.6.86×106D.6.86×1055.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)A,B,C.現(xiàn)有下面四個(gè)推斷:①拋物線開口向下;②當(dāng)x=-2時(shí),y取最大值;③當(dāng)m<4時(shí),關(guān)于x的一元二次方程ax2+bx+c=m必有兩個(gè)不相等的實(shí)數(shù)根;④直線y=kx+c(k≠0)經(jīng)過點(diǎn)A,C,當(dāng)kx+c>ax2+bx+c時(shí),x的取值范圍是-4<x<0;其中推斷正確的是()A.①② B.①③ C.①③④ D.②③④6.下列運(yùn)算正確的是()A.=x5 B. C.·= D.3+27.如圖,△ABC是⊙O的內(nèi)接三角形,AB=AC,∠BCA=65°,作CD∥AB,并與○O相交于點(diǎn)D,連接BD,則∠DBC的大小為()A.15° B.35° C.25° D.45°8.下列各類數(shù)中,與數(shù)軸上的點(diǎn)存在一一對(duì)應(yīng)關(guān)系的是()A.有理數(shù)B.實(shí)數(shù)C.分?jǐn)?shù)D.整數(shù)9.一個(gè)幾何體的三視圖如圖所示,這個(gè)幾何體是()A.棱柱B.正方形C.圓柱D.圓錐10.在下列四個(gè)標(biāo)志中,既是中心對(duì)稱又是軸對(duì)稱圖形的是()A. B. C. D.11.如圖,點(diǎn)E是四邊形ABCD的邊BC延長(zhǎng)線上的一點(diǎn),則下列條件中不能判定AD∥BE的是()A. B. C. D.12.下列各式:①3+3=6;②=1;③+==2;④=2;其中錯(cuò)誤的有().A.3個(gè) B.2個(gè) C.1個(gè) D.0個(gè)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在矩形ABCD中,AD=5,AB=4,E是BC上的一點(diǎn),BE=3,DF⊥AE,垂足為F,則tan∠FDC=_____.14.一個(gè)圓錐的母線長(zhǎng)15CM.高為9CM.則側(cè)面展開圖的圓心角________。15.圓錐體的底面周長(zhǎng)為6π,側(cè)面積為12π,則該圓錐體的高為.16.一個(gè)多邊形的每個(gè)內(nèi)角都等于150°,則這個(gè)多邊形是_____邊形.17.因式分解:a3﹣2a2b+ab2=_____.18.如圖,BD是⊙O的直徑,BA是⊙O的弦,過點(diǎn)A的切線交BD延長(zhǎng)線于點(diǎn)C,OE⊥AB于E,且AB=AC,若CD=2,則OE的長(zhǎng)為_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)為了解某校九年級(jí)男生1000米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測(cè)試,并把測(cè)試成績(jī)分為D、C、B、A四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問題:(1)a=,b=,c=;(2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為度;(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生1000米跑比賽,請(qǐng)用列表法或畫樹狀圖法,求甲、乙兩名男生同時(shí)被選中的概率.20.(6分)已知二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣3).(1)n=_____________;(2)若二次函數(shù)y=mx2﹣2mx+n的圖象與x軸有且只有一個(gè)交點(diǎn),求m值;(3)若二次函數(shù)y=mx2﹣2mx+n的圖象與平行于x軸的直線y=5的一個(gè)交點(diǎn)的橫坐標(biāo)為4,則另一個(gè)交點(diǎn)的坐標(biāo)為;(4)如圖,二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過點(diǎn)A(3,0),連接AC,點(diǎn)P是拋物線位于線段AC下方圖象上的任意一點(diǎn),求△PAC面積的最大值.21.(6分)新定義:如圖1(圖2,圖3),在△ABC中,把AB邊繞點(diǎn)A順時(shí)針旋轉(zhuǎn),把AC邊繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到△AB′C′,若∠BAC+∠B′AC′=180°,我們稱△ABC是△AB′C′的“旋補(bǔ)三角形”,△AB'C′的中線AD叫做△ABC的“旋補(bǔ)中線”,點(diǎn)A叫做“旋補(bǔ)中心”(特例感知)(1)①若△ABC是等邊三角形(如圖2),BC=1,則AD=;②若∠BAC=90°(如圖3),BC=6,AD=;(猜想論證)(2)在圖1中,當(dāng)△ABC是任意三角形時(shí),猜想AD與BC的數(shù)量關(guān)系,并證明你的猜想;(拓展應(yīng)用)(3)如圖1.點(diǎn)A,B,C,D都在半徑為5的圓上,且AB與CD不平行,AD=6,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且△APD是△BPC的“旋補(bǔ)三角形”,點(diǎn)P是“旋補(bǔ)中心”,請(qǐng)確定點(diǎn)P的位置(要求尺規(guī)作圖,不寫作法,保留作圖痕跡),并求BC的長(zhǎng).22.(8分)先化簡(jiǎn),再求代數(shù)式()÷的值,其中a=2sin45°+tan45°.23.(8分)為保護(hù)環(huán)境,我市公交公司計(jì)劃購(gòu)買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬元;若購(gòu)買A型公交車2輛,B型公交車1輛,共需350萬元.求購(gòu)買A型和B型公交車每輛各需多少萬元?預(yù)計(jì)在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購(gòu)車方案?在(2)的條件下,哪種購(gòu)車方案總費(fèi)用最少?最少總費(fèi)用是多少萬元?24.(10分)漳州市某中學(xué)對(duì)全校學(xué)生進(jìn)行文明禮儀知識(shí)測(cè)試,為了解測(cè)試結(jié)果,隨機(jī)抽取部分學(xué)生的成績(jī)進(jìn)行分析,將成績(jī)分為三個(gè)等級(jí):不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所給的信息解答下列問題:請(qǐng)將以上兩幅統(tǒng)計(jì)圖補(bǔ)充完整;若“一般”和“優(yōu)秀”均被視為達(dá)標(biāo)成績(jī),則該校被抽取的學(xué)生中有_▲人達(dá)標(biāo);若該校學(xué)生有1200人,請(qǐng)你估計(jì)此次測(cè)試中,全校達(dá)標(biāo)的學(xué)生有多少人?25.(10分)如圖,AB是⊙O的直徑,⊙O過BC的中點(diǎn)D,DE⊥AC.求證:△BDA∽△CED.26.(12分)如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點(diǎn)B作⊙O的切線,交DA的延長(zhǎng)線于點(diǎn)E,連接BD,且∠E=∠DBC.(1)求證:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.27.(12分)已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F,切點(diǎn)為G,連接AG交CD于K.(1)如圖1,求證:KE=GE;(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】
根據(jù)圖形給出的信息求出兩車的出發(fā)時(shí)間,速度等即可解答.【詳解】解:①兩車在276km處相遇,此時(shí)快車行駛了4個(gè)小時(shí),故錯(cuò)誤.②慢車0時(shí)出發(fā),快車2時(shí)出發(fā),故正確.③快車4個(gè)小時(shí)走了276km,可求出速度為69km/h,錯(cuò)誤.④慢車6個(gè)小時(shí)走了276km,可求出速度為46km/h,正確.⑤慢車走了18個(gè)小時(shí),速度為46km/h,可得A,B距離為828km,正確.⑥快車2時(shí)出發(fā),14時(shí)到達(dá),用了12小時(shí),錯(cuò)誤.故答案選B.【點(diǎn)睛】本題考查了看圖手機(jī)信息的能力,注意快車并非0時(shí)刻出發(fā)是解題關(guān)鍵.2、C【解析】試題分析:由題中所給出的左視圖知物體共兩層,每一層都是兩個(gè)小正方體;從俯視圖可以可以看出最底層的個(gè)數(shù)所以圖中的小正方體最少2+4=1.故選C.3、D【解析】
由三角形內(nèi)切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關(guān)系式∠OBC+∠OCB=(∠ABC+∠ACB),把對(duì)應(yīng)數(shù)值代入即可求得∠BOC的值.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內(nèi)切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.【點(diǎn)睛】此題主要考查了三角形的內(nèi)切圓與內(nèi)心以及切線的性質(zhì).關(guān)鍵是要知道關(guān)系式∠OBC+∠OCB=(∠ABC+∠ACB).4、D【解析】根據(jù)科學(xué)記數(shù)法的表示形式(a×10n,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù))可得:686000=6.86×105,
故選:D.5、B【解析】
結(jié)合函數(shù)圖象,利用二次函數(shù)的對(duì)稱性,恰當(dāng)使用排除法,以及根據(jù)函數(shù)圖象與不等式的關(guān)系可以得出正確答案.【詳解】解:①由圖象可知,拋物線開口向下,所以①正確;
②若當(dāng)x=-2時(shí),y取最大值,則由于點(diǎn)A和點(diǎn)B到x=-2的距離相等,這兩點(diǎn)的縱坐標(biāo)應(yīng)該相等,但是圖中點(diǎn)A和點(diǎn)B的縱坐標(biāo)顯然不相等,所以②錯(cuò)誤,從而排除掉A和D;
剩下的選項(xiàng)中都有③,所以③是正確的;
易知直線y=kx+c(k≠0)經(jīng)過點(diǎn)A,C,當(dāng)kx+c>ax2+bx+c時(shí),x的取值范圍是x<-4或x>0,從而④錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查二次函數(shù)的圖象,二次函數(shù)的對(duì)稱性,以及二次函數(shù)與一元二次方程,二次函數(shù)與不等式的關(guān)系,屬于較復(fù)雜的二次函數(shù)綜合選擇題.6、B【解析】
根據(jù)冪的運(yùn)算法則及整式的加減運(yùn)算即可判斷.【詳解】A.=x6,故錯(cuò)誤;B.,正確;C.·=,故錯(cuò)誤;D.3+2不能合并,故錯(cuò)誤,故選B.【點(diǎn)睛】此題主要考查整式的加減及冪的運(yùn)算,解題的關(guān)鍵是熟知其運(yùn)算法則.7、A【解析】
根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理可得∠A=50°,再根據(jù)平行線的性質(zhì)可得∠ACD=∠A=50°,由圓周角定理可行∠D=∠A=50°,再根據(jù)三角形內(nèi)角和定理即可求得∠DBC的度數(shù).【詳解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D-∠BCD=180°-50°-(65°+50°)=15°,故選A.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),圓周角定理,三角形內(nèi)角和定理等,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.8、B【解析】
根據(jù)實(shí)數(shù)與數(shù)軸上的點(diǎn)存在一一對(duì)應(yīng)關(guān)系解答.【詳解】實(shí)數(shù)與數(shù)軸上的點(diǎn)存在一一對(duì)應(yīng)關(guān)系,故選:B.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸上點(diǎn)的關(guān)系,每一個(gè)實(shí)數(shù)都可以用數(shù)軸上唯一的點(diǎn)來表示,反過來,數(shù)軸上的每個(gè)點(diǎn)都表示一個(gè)唯一的實(shí)數(shù),也就是說實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng).9、C【解析】試題解析:根據(jù)主視圖和左視圖為矩形可判斷出該幾何體是柱體,根據(jù)俯視圖是圓可判斷出該幾何體為圓柱.故選C.10、C【解析】
根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷利用排除法求解.【詳解】解:A、不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、既不是中心對(duì)稱圖形,也不是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C、既是中心對(duì)稱圖形又是軸對(duì)稱圖形,故本選項(xiàng)正確;D、不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.11、A【解析】
利用平行線的判定方法判斷即可得到結(jié)果.【詳解】∵∠1=∠2,∴AB∥CD,選項(xiàng)A符合題意;∵∠3=∠4,∴AD∥BC,選項(xiàng)B不合題意;∵∠D=∠5,∴AD∥BC,選項(xiàng)C不合題意;∵∠B+∠BAD=180°,∴AD∥BC,選項(xiàng)D不合題意,故選A.【點(diǎn)睛】此題考查了平行線的判定,熟練掌握平行線的判定方法是解本題的關(guān)鍵.12、A【解析】3+3=6,錯(cuò)誤,無法計(jì)算;②=1,錯(cuò)誤;③+==2不能計(jì)算;④=2,正確.故選A.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、4【解析】
首先根據(jù)矩形的性質(zhì)以及垂線的性質(zhì)得到∠FDC=∠ABE,進(jìn)而得出tan∠FDC=tan∠AEB=ABBE【詳解】∵DF⊥AE,垂足為F,∴∠AFD=90°,∵∠ADF+∠DAF=90°,∠ADF+∠CDF=90°,∴∠DAF=∠CDF,∵∠DAF=∠AEB,∴∠FDC=∠ABE,∴tan∠FDC=tan∠AEB=ABBE,∵在矩形ABCD中,AB=4,E是BC上的一點(diǎn),BE=3,∴tan∠FDC=43.故答案為【點(diǎn)睛】本題主要考查了銳角三角函數(shù)的關(guān)系以及矩形的性質(zhì),根據(jù)已知得出tan∠FDC=tan∠AEB是解題關(guān)鍵.14、288°【解析】
母線長(zhǎng)為15cm,高為9cm,由勾股定理可得圓錐的底面半徑;由底面周長(zhǎng)與扇形的弧長(zhǎng)相等求得圓心角.【詳解】解:如圖所示,在Rt△SOA中,SO=9,SA=15;則:設(shè)側(cè)面屬開圖扇形的國(guó)心角度數(shù)為n,則由得n=288°故答案為:288°.【點(diǎn)睛】本題利用了勾股定理,弧長(zhǎng)公式,圓的周長(zhǎng)公式和扇形面積公式求解.15、【解析】試題分析:用周長(zhǎng)除以2π即為圓錐的底面半徑;根據(jù)圓錐的側(cè)面積=×側(cè)面展開圖的弧長(zhǎng)×母線長(zhǎng)可得圓錐的母線長(zhǎng),利用勾股定理可得圓錐的高.試題解析:∵圓錐的底面周長(zhǎng)為6π,∴圓錐的底面半徑為6π÷2π="3,"∵圓錐的側(cè)面積=×側(cè)面展開圖的弧長(zhǎng)×母線長(zhǎng),∴母線長(zhǎng)=2×12π÷6π="4,"∴這個(gè)圓錐的高是考點(diǎn):圓錐的計(jì)算.16、1【解析】
根據(jù)多邊形的內(nèi)角和定理:180°?(n-2)求解即可.【詳解】由題意可得:180°?(n-2)=150°?n,
解得n=1.
故多邊形是1邊形.17、a(a﹣b)1.【解析】【分析】先提公因式a,然后再利用完全平方公式進(jìn)行分解即可.【詳解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案為a(a﹣b)1.【點(diǎn)睛】本題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.18、【解析】
連接OA,所以∠OAC=90°,因?yàn)锳B=AC,所以∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度數(shù),在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【詳解】連接OA,由題意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C==,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt△OAE中,sin∠OAE==,∴OA=2OE,∴OE=OA=,故答案為.【點(diǎn)睛】本題主要考查了圓周角定理,角的轉(zhuǎn)換,以及在直角三角形中的三角函數(shù)的運(yùn)用,解本題的要點(diǎn)在于求出OA的值,從而利用直角三角形的三角函數(shù)的運(yùn)用求出答案.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)2、45、20;(2)72;(3)【解析】分析:(1)根據(jù)A等次人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)乘以D等次百分比可得a的值,再用B、C等次人數(shù)除以總?cè)藬?shù)可得b、c的值;(2)用360°乘以C等次百分比可得;(3)畫出樹狀圖,由概率公式即可得出答案.詳解:(1)本次調(diào)查的總?cè)藬?shù)為12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,(2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為360°×20%=72°,(3)畫樹狀圖,如圖所示:共有12個(gè)可能的結(jié)果,選中的兩名同學(xué)恰好是甲、乙的結(jié)果有2個(gè),故P(選中的兩名同學(xué)恰好是甲、乙)=.點(diǎn)睛:此題主要考查了列表法與樹狀圖法,以及扇形統(tǒng)計(jì)圖、條形統(tǒng)計(jì)圖的應(yīng)用,要熟練掌握.20、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)當(dāng)a=時(shí),△PAC的面積取最大值,最大值為【解析】
(2)將(0,-2)代入二次函數(shù)解析式中即可求出n值;(2)由二次函數(shù)圖象與x軸只有一個(gè)交點(diǎn),利用根的判別式△=0,即可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論;(2)根據(jù)二次函數(shù)的解析式利用二次函數(shù)的性質(zhì)可找出二次函數(shù)圖象的對(duì)稱軸,利用二次函數(shù)圖象的對(duì)稱性即可找出另一個(gè)交點(diǎn)的坐標(biāo);(4)將點(diǎn)A的坐標(biāo)代入二次函數(shù)解析式中可求出m值,由此可得出二次函數(shù)解析式,由點(diǎn)A、C的坐標(biāo),利用待定系數(shù)法可求出直線AC的解析式,過點(diǎn)P作PD⊥x軸于點(diǎn)D,交AC于點(diǎn)Q,設(shè)點(diǎn)P的坐標(biāo)為(a,a2-2a-2),則點(diǎn)Q的坐標(biāo)為(a,a-2),點(diǎn)D的坐標(biāo)為(a,0),根據(jù)三角形的面積公式可找出S△ACP關(guān)于a的函數(shù)關(guān)系式,配方后即可得出△PAC面積的最大值.【詳解】解:(2)∵二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣2),∴n=﹣2.故答案為﹣2.(2)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象與x軸有且只有一個(gè)交點(diǎn),∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,解得:m2=0,m2=﹣2.∵m≠0,∴m=﹣2.(2)∵二次函數(shù)解析式為y=mx2﹣2mx﹣2,∴二次函數(shù)圖象的對(duì)稱軸為直線x=﹣=2.∵該二次函數(shù)圖象與平行于x軸的直線y=5的一個(gè)交點(diǎn)的橫坐標(biāo)為4,∴另一交點(diǎn)的橫坐標(biāo)為2×2﹣4=﹣2,∴另一個(gè)交點(diǎn)的坐標(biāo)為(﹣2,5).故答案為(﹣2,5).(4)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象經(jīng)過點(diǎn)A(2,0),∴0=9m﹣6m﹣2,∴m=2,∴二次函數(shù)解析式為y=x2﹣2x﹣2.設(shè)直線AC的解析式為y=kx+b(k≠0),將A(2,0)、C(0,﹣2)代入y=kx+b,得:,解得:,∴直線AC的解析式為y=x﹣2.過點(diǎn)P作PD⊥x軸于點(diǎn)D,交AC于點(diǎn)Q,如圖所示.設(shè)點(diǎn)P的坐標(biāo)為(a,a2﹣2a﹣2),則點(diǎn)Q的坐標(biāo)為(a,a﹣2),點(diǎn)D的坐標(biāo)為(a,0),∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,∴S△ACP=S△APQ+S△CPQ=PQ?OD+PQ?AD=﹣a2+a=﹣(a﹣)2+,∴當(dāng)a=時(shí),△PAC的面積取最大值,最大值為.【點(diǎn)睛】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、拋物線與x軸的交點(diǎn)、二次函數(shù)的性質(zhì)以及二次函數(shù)的最值,解題的關(guān)鍵是:(2)代入點(diǎn)的坐標(biāo)求出n值;(2)牢記當(dāng)△=b2-4ac=0時(shí)拋物線與x軸只有一個(gè)交點(diǎn);(2)利用二次函數(shù)的對(duì)稱軸求出另一交點(diǎn)的坐標(biāo);(4)利用三角形的面積公式找出S△ACP關(guān)于a的函數(shù)關(guān)系式.21、(1)①2;②3;(2)AD=12【解析】
(1)①根據(jù)等邊三角形的性質(zhì)可得出AB=AC=1、∠BAC=60,結(jié)合“旋補(bǔ)三角形”的定義可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三線合一可得出∠ADC′=90°,通過解直角三角形可求出AD的長(zhǎng)度;
②由“旋補(bǔ)三角形”的定義可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,進(jìn)而可得出△ABC≌△AB′C′(SAS),根據(jù)全等三角形的性質(zhì)可得出B′C′=BC=6,再利用直角三角形斜邊上的中線等于斜邊的一半即可求出AD的長(zhǎng)度;(2)AD=12BC,過點(diǎn)B′作B′E∥AC′,且B′E=AC′,連接C′E、DE,則四邊形ACC′B′為平行四邊形,根據(jù)平行四邊形的性質(zhì)結(jié)合“旋補(bǔ)三角形”的定義可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,進(jìn)而可證出△BAC≌△AB′E(SAS),根據(jù)全等三角形的性質(zhì)可得出BC=AE,由平行四邊形的對(duì)角線互相平分即可證出AD=1【詳解】(1)①∵△ABC是等邊三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD為等腰△AB′C′的中線,∴AD⊥B′C′,∠C′=30°,∴∠ADC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=12②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,AB=AB∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=12故答案為:①2;②3.(2)AD=12證明:在圖1中,過點(diǎn)B′作B′E∥AC′,且B′E=AC′,連接C′E、DE,則四邊形ACC′B′為平行四邊形.∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,∴∠BAC=∠AB′E.在△BAC和△AB′E中,BA=AB∴△BAC≌△AB′E(SAS),∴BC=AE.∵AD=12∴AD=12(3)在圖1中,作AB、CD的垂直平分線,交于點(diǎn)P,則點(diǎn)P為四邊形ABCD的外接圓圓心,過點(diǎn)P作PF⊥BC于點(diǎn)F.∵PB=PC,PF⊥BC,∴PF為△PBC的中位線,∴PF=12在Rt△BPF中,∠BFP=90°,PB=5,PF=3,∴BF=PB∴BC=2BF=4.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、平行四邊形的性質(zhì)、解直角三角形、勾股定理以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是:(1)①利用解含30°角的直角三角形求出AD=12AC′;②牢記直角三角形斜邊上的中線等于斜邊的一半;(2)構(gòu)造平行四邊形,利用平行四邊形對(duì)角線互相平分找出AD=12AE=22、,.【解析】
先把小括號(hào)內(nèi)的通分,按照分式的減法和分式除法法則進(jìn)行化簡(jiǎn),再把字母的值代入運(yùn)算即可.【詳解】解:原式當(dāng)時(shí)原式【點(diǎn)睛】考查分式的混合運(yùn)算,掌握運(yùn)算順序是解題的關(guān)鍵.23、(1)購(gòu)買A型公交車每輛需100萬元,購(gòu)買B型公交車每輛需150萬元.(2)三種方案:①購(gòu)買A型公交車6輛,則B型公交車4輛;②購(gòu)買A型公交車7輛,則B型公交車3輛;③購(gòu)買A型公交車8輛,則B型公交車2輛;(3)購(gòu)買A型公交車8輛,B型公交車2輛費(fèi)用最少,最少費(fèi)用為1100萬元.【解析】
詳解:(1)設(shè)購(gòu)買A型公交車每輛需x萬元,購(gòu)買B型公交車每輛需y萬元,由題意得x+2y=解得x=答:購(gòu)買A型公交車每輛需100萬元,購(gòu)買B型公交車每輛需150萬元.(2)設(shè)購(gòu)買A型公交車a輛,則B型公交車(10-a)輛,由題意得100a+15010-a解得:6≤a≤8,因?yàn)閍是整數(shù),所以a=6,7,8;則(10-a)=4,3,2;三種方案:①購(gòu)買A型公交車6輛,B型公交車4輛;②購(gòu)買A型公交車7輛,B型公交車3輛;③購(gòu)買A型公交車8輛,B型公交車2輛.(3)①購(gòu)買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購(gòu)買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購(gòu)買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;故購(gòu)買A型公交車8輛,則B型公交車2輛費(fèi)用最少,最少總費(fèi)用為1100萬元.【點(diǎn)睛】此題考查二元一次方程組和一元一次不等式組的應(yīng)用,注意理解題意,找出題目蘊(yùn)含的數(shù)量關(guān)系,列出方程組或不等式組解決問題.24、(1)見解析;(2)1;(3)估計(jì)全校達(dá)標(biāo)的學(xué)生有10人【解析】
(1)成績(jī)一般的學(xué)生占的百分比=1-成績(jī)優(yōu)秀的百分比-成績(jī)不合格的百分比,測(cè)試的學(xué)生總數(shù)=不合格的人數(shù)÷不合格人數(shù)的百分比,繼而求出成績(jī)優(yōu)秀的人數(shù).(2)將成績(jī)一般和優(yōu)秀的人數(shù)相加即可;(3)該校學(xué)生文明禮儀知識(shí)測(cè)試中成績(jī)達(dá)標(biāo)的人數(shù)=1200×成績(jī)達(dá)標(biāo)的學(xué)生所占的百分比.【詳解】解:(1)成績(jī)一般的學(xué)生占的百分比=1﹣20%﹣50%=30%,測(cè)試的學(xué)生總數(shù)=24÷20%=120人,成績(jī)優(yōu)秀的人數(shù)=120×50%=60人,所補(bǔ)充圖形如下所示:(2)該校被抽取的學(xué)生中達(dá)標(biāo)的人數(shù)=36+60=1.(3)1200×(50%+30%)=10(人).答:估計(jì)全校達(dá)標(biāo)的學(xué)生有10人.25、證明見解析.【解析】
不難看出△BDA和△CED都是直角三角形,證明△BDA∽△CED,只需要另外找一對(duì)角相等即可,由于AD是△ABC的中線,又可證AD⊥BC,即AD為BC邊的中垂線,從而得到∠B=∠C,即可證相似.【詳解】∵AB是⊙O直徑,∴AD⊥BC,又BD=CD,∴AB=AC,∴∠B=∠C,又∠ADB=∠DEC=90°,∴△BDA∽△CED.【點(diǎn)睛】本題重點(diǎn)考查了圓周角定理、直徑所對(duì)的圓周角為直角及相似三角形判定等知識(shí)的綜合運(yùn)用.26、(1)詳見解析;(2)OA=.【解析】
(1)連接OB,證明∠ABE=∠ADB,可得∠ABE=∠BDC,則∠ADB=∠BDC;
(2)證明△AEB∽△CBD,AB=x,則BD=2x,可求出AB,則答案可求出.【詳解】(1)證明:連接OB,∵BE為⊙O的切線,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直徑,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四邊形ABCD的外接圓為⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=,∴設(shè)AB=x,則BD=2x,∴,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴,∴,解得x=3,∴AB=x=15,∴OA=.【點(diǎn)睛】本題考查切線的性質(zhì)、解直角三角形、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線解決問題.27、(1)證明見解析;(2)△EAD是等腰三角形.證明見解析;(3).【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度大件貨物運(yùn)輸安全責(zé)任協(xié)議4篇
- 2025年度購(gòu)房首付資金監(jiān)管及第三方托管服務(wù)合同3篇
- 2024年度民間借貸合同擔(dān)保方式與擔(dān)保物評(píng)估3篇
- 二零二五年度高品質(zhì)家具制造木工分包合同樣本3篇
- 2025年能源企業(yè)燃料采購(gòu)合同范本4篇
- 常州期末九上數(shù)學(xué)試卷
- 2025年度城市綠化工程臨時(shí)員工服務(wù)協(xié)議范本4篇
- 二零二五年度新能源項(xiàng)目代理終止及資源整合合作協(xié)議4篇
- 企業(yè)內(nèi)部年度培訓(xùn)合同
- 郊區(qū)工程施工項(xiàng)目合同書
- 寒假作業(yè)一年級(jí)上冊(cè)《數(shù)學(xué)每日一練》30次打卡
- 2024-2025學(xué)年九年級(jí)化學(xué)上冊(cè) 第二單元 單元測(cè)試卷(人教版)
- 2024年公共衛(wèi)生基本知識(shí)考試題庫(kù)(附含答案)
- 2024多級(jí)AO工藝污水處理技術(shù)規(guī)程
- 2024年江蘇省鹽城市中考數(shù)學(xué)試卷真題(含答案)
- DZ∕T 0287-2015 礦山地質(zhì)環(huán)境監(jiān)測(cè)技術(shù)規(guī)程(正式版)
- 2024年合肥市廬陽區(qū)中考二模英語試題含答案
- 質(zhì)檢中心制度匯編討論版樣本
- 藥娘激素方案
- 提高靜脈留置使用率品管圈課件
- GB/T 10739-2023紙、紙板和紙漿試樣處理和試驗(yàn)的標(biāo)準(zhǔn)大氣條件
評(píng)論
0/150
提交評(píng)論