版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省臺州椒江區(qū)中考猜題數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,直線m∥n,直角三角板ABC的頂點A在直線m上,則∠α的余角等于()A.19° B.38° C.42° D.52°2.一元二次方程mx2+mx﹣=0有兩個相等實數(shù)根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.23.一次函數(shù)的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<105.下列計算或化簡正確的是()A. B.C. D.6.如圖,矩形ABCD的對角線AC,BD相交于點O,點M是AB的中點,若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.107.觀察下列圖形,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.8.如圖,在平面直角坐標系xOy中,等腰梯形ABCD的頂點坐標分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復操作依次得到點P1,P2,…,則點P2010的坐標是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)9.如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口,4小時后貨船在小島的正東方向,則貨船的航行速度是()A.7海里/時 B.7海里/時 C.7海里/時 D.28海里/時10.若實數(shù)a,b滿足|a|>|b|,則與實數(shù)a,b對應的點在數(shù)軸上的位置可以是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在臨桂新區(qū)建設中,需要修一段全長2400m的道路,為了盡量減少施工對縣城交通工具所造成的影響,實際工作效率比原計劃提高了20%,結果提前8天完成任務,求原計劃每天修路的長度.若設原計劃每天修路xm,則根據(jù)題意可得方程.12.要使分式有意義,則x的取值范圍為_________.13.已知x3=y14.矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.15.如圖,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分線DE交AC于點D,連接BD,則∠ABD=___________°.16.的相反數(shù)是______,的倒數(shù)是______.三、解答題(共8題,共72分)17.(8分)為提高城市清雪能力,某區(qū)增加了機械清雪設備,現(xiàn)在平均每天比原來多清雪300立方米,現(xiàn)在清雪4000立方米所需時間與原來清雪3000立方米所需時間相同,求現(xiàn)在平均每天清雪量.18.(8分)如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F(xiàn)在DE上,且AF=CE=AE.(1)說明四邊形ACEF是平行四邊形;(2)當∠B滿足什么條件時,四邊形ACEF是菱形,并說明理由.19.(8分)計算:|﹣|﹣﹣(2﹣π)0+2cos45°.解方程:=1﹣20.(8分)先化簡代數(shù)式:,再代入一個你喜歡的數(shù)求值.21.(8分)如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC、AB于點E.F.試判斷直線BC與⊙O的位置關系,并說明理由;若BD=23,BF=2,求⊙O的半徑.22.(10分)綜合與探究如圖1,平面直角坐標系中,拋物線y=ax2+bx+3與x軸分別交于點A(﹣2,0),B(4,0),與y軸交于點C,點D是y軸負半軸上一點,直線BD與拋物線y=ax2+bx+3在第三象限交于點E(﹣4,y)點F是拋物線y=ax2+bx+3上的一點,且點F在直線BE上方,將點F沿平行于x軸的直線向右平移m個單位長度后恰好落在直線BE上的點G處.(1)求拋物線y=ax2+bx+3的表達式,并求點E的坐標;(2)設點F的橫坐標為x(﹣4<x<4),解決下列問題:①當點G與點D重合時,求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過點F作x軸的垂線FP,交直線BE于點P,垂足為F,連接FD.是否存在點F,使△FDP與△FDG的面積比為1:2?若存在,直接寫出點F的坐標;若不存在,說明理由.23.(12分)如圖,已知是的直徑,點、在上,且,過點作,垂足為.求的長;若的延長線交于點,求弦、和弧圍成的圖形(陰影部分)的面積.24.為響應“學雷鋒、樹新風、做文明中學生”號召,某校開展了志愿者服務活動,活動項目有“戒毒宣傳”、“文明交通崗”、“關愛老人”、“義務植樹”、“社區(qū)服務”等五項,活動期間,隨機抽取了部分學生對志愿者服務情況進行調查,結果發(fā)現(xiàn),被調查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調查結果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.被隨機抽取的學生共有多少名?在扇形統(tǒng)計圖中,求活動數(shù)為3項的學生所對應的扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:過C作CD∥直線m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,則∠a的余角是52°.故選D.考點:平行線的性質;余角和補角.2、C【解析】
由方程有兩個相等的實數(shù)根,得到根的判別式等于0,求出m的值,經(jīng)檢驗即可得到滿足題意m的值.【詳解】∵一元二次方程mx1+mx﹣=0有兩個相等實數(shù)根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經(jīng)檢驗m=0不合題意,則m=﹣1.故選C.【點睛】此題考查了根的判別式,根的判別式的值大于0,方程有兩個不相等的實數(shù)根;根的判別式的值等于0,方程有兩個相等的實數(shù)根;根的判別式的值小于0,方程沒有實數(shù)根.3、B【解析】
由二次函數(shù),可得函數(shù)圖像經(jīng)過一、三、四象限,所以不經(jīng)過第二象限【詳解】解:∵,∴函數(shù)圖象一定經(jīng)過一、三象限;又∵,函數(shù)與y軸交于y軸負半軸,
∴函數(shù)經(jīng)過一、三、四象限,不經(jīng)過第二象限故選B【點睛】此題考查一次函數(shù)的性質,要熟記一次函數(shù)的k、b對函數(shù)圖象位置的影響4、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據(jù)知求出CG的長是解題的關鍵.5、D【解析】解:A.不是同類二次根式,不能合并,故A錯誤;B.
,故B錯誤;C.,故C錯誤;D.,正確.故選D.6、D【解析】
利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點O,
∴∠BAD=90°,點O是線段BD的中點,
∵點M是AB的中點,
∴OM是△ABD的中位線,
∴AD=2OM=1.
∴在直角△ABD中,由勾股定理知:BD=.
故選:D.【點睛】本題考查了三角形中位線定理和矩形的性質,利用三角形中位線定理求得AD的長度是解題的關鍵.7、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤;B、是軸對稱圖形,不是中心對稱圖形.故本選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故本選項正確;D、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.8、B【解析】分析:根據(jù)題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,結合中點坐標公式即可求得點P1的坐標;同理可求得其它各點的坐標,分析可得規(guī)律,進而可得答案.詳解:根據(jù)題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,又∵A的坐標是(1,1),結合中點坐標公式可得P1的坐標是(1,0);同理P1的坐標是(1,﹣1),記P1(a1,b1),其中a1=1,b1=﹣1.根據(jù)對稱關系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同樣可以求得,點P10的坐標為(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴點P1010的坐標是(1010,﹣1),故選:B.點睛:本題考查了對稱的性質,坐標與圖形的變化---旋轉,根據(jù)條件求出前邊幾個點的坐標,得到規(guī)律是解題關鍵.9、A【解析】試題解析:設貨船的航行速度為海里/時,小時后貨船在點處,作于點.由題意海里,海里,在中,所以在中,所以所以解得:故選A.10、D【解析】
根據(jù)絕對值的意義即可解答.【詳解】由|a|>|b|,得a與原點的距離比b與原點的距離遠,只有選項D符合,故選D.【點睛】本題考查了實數(shù)與數(shù)軸,熟練運用絕對值的意義是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】試題解析:∵原計劃用的時間為:實際用的時間為:∴可列方程為:故答案為12、x≠1【解析】由題意得x-1≠0,∴x≠1.故答案為x≠1.13、7【解析】
由x3=y4可知xy【詳解】解:∵x3∴xy∴原式=xy【點睛】本題考查了分式的化簡求值.14、3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,繼而可確定點P在BD上,然后再根據(jù)△APD是等腰三角形,分DP=DA、AP=DP兩種情況進行討論即可得.【詳解】∵四邊形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴點P在BD上,如圖1,當DP=DA=8時,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如圖2,當AP=DP時,此時P為BD中點,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;綜上,PE的長為1.2或3,故答案為:1.2或3.【點睛】本題考查了相似三角形的性質,等腰三角形的性質,矩形的性質等,確定出點P在線段BD上是解題的關鍵.15、1【解析】∵在△ABC中,AB=BC,∠ABC=110°,
∴∠A=∠C=1°,
∵AB的垂直平分線DE交AC于點D,
∴AD=BD,
∴∠ABD=∠A=1°;
故答案是1.16、2,【解析】試題分析:根據(jù)相反數(shù)和倒數(shù)的定義分別進行求解,﹣2的相反數(shù)是2,﹣2的倒數(shù)是.考點:倒數(shù);相反數(shù).三、解答題(共8題,共72分)17、現(xiàn)在平均每天清雪量為1立方米.【解析】分析:設現(xiàn)在平均每天清雪量為x立方米,根據(jù)等量關系“現(xiàn)在清雪4000立方米所需時間與原來清雪3000立方米所需時間相同”列分式方程求解.詳解:設現(xiàn)在平均每天清雪量為x立方米,由題意,得解得x=1.經(jīng)檢驗x=1是原方程的解,并符合題意.答:現(xiàn)在平均每天清雪量為1立方米.點睛:此題主要考查了分式方程的應用,關鍵是確定問題的等量關系,注意解分式方程的時候要進行檢驗.18、(1)說明見解析;(2)當∠B=30°時,四邊形ACEF是菱形.理由見解析.【解析】試題分析:(1)證明△AEC≌△EAF,即可得到EF=CA,根據(jù)兩組對邊分別相等的四邊形是平行四邊形即可判斷;(2)當∠B=30°時,四邊形ACEF是菱形.根據(jù)直角三角形的性質,即可證得AC=EC,根據(jù)菱形的定義即可判斷.(1)證明:由題意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四邊形ACEF是平行四邊形.(2)解:當∠B=30°時,四邊形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位線,∴E是AB的中點,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四邊形ACEF是菱形.考點:菱形的判定;全等三角形的判定與性質;線段垂直平分線的性質;平行四邊形的判定.19、(1)﹣1;(2)x=﹣1是原方程的根.【解析】
(1)直接化簡二次根式進而利用零指數(shù)冪的性質以及特殊角三角函數(shù)值進而得出答案;(2)直接去分母再解方程得出答案.【詳解】(1)原式=﹣2﹣1+2×=﹣﹣1+=﹣1;(2)去分母得:3x=x﹣3+1,解得:x=﹣1,檢驗:當x=﹣1時,x﹣3≠0,故x=﹣1是原方程的根.【點睛】此題主要考查了實數(shù)運算和解分式方程,正確掌握解分式方程的方法是解題關鍵.20、【解析】
先根據(jù)分式的運算法則進行化簡,再代入使分式有意義的值計算.【詳解】解:原式.使原分式有意義的值可取2,當時,原式.【點睛】考核知識點:分式的化簡求值.掌握分式的運算法則是關鍵.21、(1)相切,理由見解析;(1)1.【解析】
(1)求出OD//AC,得到OD⊥BC,根據(jù)切線的判定得出即可;(1)根據(jù)勾股定理得出方程,求出方程的解即可.【詳解】(1)直線BC與⊙O的位置關系是相切,理由是:連接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD為半徑,∴直線BC與⊙O的位置關系是相切;(1)設⊙O的半徑為R,則OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+1)2=(13)2+R2,解得:R=1,即⊙O的半徑是1.【點睛】此題考查切線的判定,勾股定理,解題關鍵在于求出OD⊥BC.22、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標為(﹣3,0)或(﹣3,).【解析】
(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線的表達式,再將E點坐標代入表達式求出y的值即可;(3)①設直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達式求出D點坐標,當點G與點D重合時,可得G點坐標,GF∥x軸,故可得F的縱坐標,再將y=﹣2代入拋物線的解析式求解可得點F的坐標,再根據(jù)m=FG即可得m的值;②設點F與點G的坐標,根據(jù)m=FG列出方程化簡可得出m的二次函數(shù)關系式,再根據(jù)二次函數(shù)的圖象可得m的取值范圍;(2)分別分析當點F在x軸的左側時與右側時的兩種情況,根據(jù)△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設出F,G點的坐標,再根據(jù)兩點關系列出等式化簡求解即可得F的坐標.【詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線的表達式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點E的坐標為(﹣4,﹣6).(3)①設直線BD的表達式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線BD的表達式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當點G與點D重合時,G的坐標為(0,﹣2).∵GF∥x軸,∴F的縱坐標為﹣2.將y=﹣2代入拋物線的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點F的坐標為(﹣+3,﹣2).∴m=FG=﹣3.②設點F的坐標為(x,﹣x3+x+2),則點G的坐標為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡得,m=﹣x3+4,∵﹣<0,∴m有最大值,當x=0時,m的最大值為4.(2)當點F在x軸的左側時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設F的坐標為(x,﹣x3+x+2),則點G的坐標為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點F的坐標為(﹣3,0).當點F在x軸的右側時,如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設F的坐標為(x,﹣x3+x+2),則點G的坐標為(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴點F的坐標為(﹣3,).綜上所述,點F的坐標為(﹣3,0)或(﹣3,).【點睛】本題考查了二次函數(shù)的應用,解題的關鍵是熟練的掌握二次函數(shù)的應用.23、(1)OE=;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學五年級混合運算練習題
- 小學四年級數(shù)學乘除法豎式計算題
- 小學數(shù)學二年級100以內連加連減口算題
- 高考語文模擬試題(二十)
- 2025年中考語文文言文總復習-學生版-專題01:文言文閱讀之理解實詞含義(講義)
- 北京市豐臺區(qū)2022-2023學年高三上學期期末練習英語學科試卷
- 房屋裝修行業(yè)顧問工作總結
- 制藥業(yè)行政后勤工作總結
- 《公司團隊培訓游戲》課件
- 演出票務公司營業(yè)員服務總結
- 【長安的荔枝中李善德的人物形象分析7800字(論文)】
- CJT 288-2017 預制雙層不銹鋼煙道及煙囪
- 生物安全風險評估報告
- 戈19商務方案第十九屆玄奘之路戈壁挑戰(zhàn)賽商務合作方案
- 廣西河池市宜州區(qū)2023-2024學年七年級上學期期末考試數(shù)學試卷(含解析)
- 2024高考政治真題-哲學-匯集(解析版)
- 對承租方有利的商鋪租賃合同
- 2024云南大學滇池學院教師招聘考試筆試試題
- 國外幼兒園自主游戲研究現(xiàn)狀
- 浙江大學2011–2012學年冬季學期《高級數(shù)據(jù)結構與算法分析》課程期末考試試卷
- 職業(yè)生涯規(guī)劃-體驗式學習智慧樹知到期末考試答案章節(jié)答案2024年華僑大學
評論
0/150
提交評論