




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省福州市部分校2024屆中考沖刺卷數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.安徽省在一次精準扶貧工作中,共投入資金4670000元,將4670000用科學(xué)記數(shù)法表示為()A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×1072.下列長度的三條線段能組成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,43.左下圖是一些完全相同的小正方體搭成的幾何體的三視圖.這個幾何體只能是()A. B. C. D.4.如圖,若△ABC內(nèi)接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長為()A. B. C. D.5.用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽(如圖所示),則這個紙帽的高是()A.cm B.3cm C.4cm D.4cm6.某校今年共畢業(yè)生297人,其中女生人數(shù)為男生人數(shù)的65%,則該校今年的女畢業(yè)生有()A.180人B.117人C.215人D.257人7.如圖,將△ABC繞點C(0,-1)旋轉(zhuǎn)180°得到△A′B′C,設(shè)點A的坐標為(a,b),則點A′的坐標為()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)8.在平面直角坐標系中,將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)9.如圖,△ABC在邊長為1個單位的方格紙中,它的頂點在小正方形的頂點位置.如果△ABC的面積為10,且sinA=,那么點C的位置可以在()A.點C1處 B.點C2處 C.點C3處 D.點C4處10.下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.我國古代數(shù)學(xué)著作《九章算術(shù)》卷七有下列問題:“今有共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價幾何?”意思是:現(xiàn)在有幾個人共同出錢去買件物品,如果每人出8錢,則剩余3錢;如果每人出7錢,則差4錢.問有多少人,物品的價格是多少?設(shè)有人,則可列方程為__________.12.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F(xiàn)分別是線段BC,AC的中點,連結(jié)EF.(1)線段BE與AF的位置關(guān)系是,=.(2)如圖2,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.(3)如圖3,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).13.不等式組的解集是__________.14.已知等腰三角形的一邊等于5,另一邊等于6,則它的周長等于_______.15.如圖,在4×4正方形網(wǎng)格中,黑色部分的圖形構(gòu)成一個軸對稱圖形,現(xiàn)在任選取一個白色的小正方形并涂黑,使圖中黑色部分的圖形仍然構(gòu)成一個軸對稱圖形的概率是_____.16.如圖,在平面直角坐標系中,⊙P的圓心在x軸上,且經(jīng)過點A(m,﹣3)和點B(﹣1,n),點C是第一象限圓上的任意一點,且∠ACB=45°,則⊙P的圓心的坐標是_____.17.已知數(shù)據(jù)x1,x2,…,xn的平均數(shù)是,則一組新數(shù)據(jù)x1+8,x2+8,…,xn+8的平均數(shù)是____.三、解答題(共7小題,滿分69分)18.(10分)五一期間,小紅到郊野公園游玩,在景點P處測得景點B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達景點A,此時測得景點B正好位于景點A的正南方向,求景點A與景點B之間的距離.(結(jié)果保留整數(shù))參考數(shù)據(jù):sin37≈0.60,cos37°=0.80,tan37°≈0.7519.(5分)計算:.20.(8分)講授“軸對稱”時,八年級教師設(shè)計了如下:四種教學(xué)方法:①教師講,學(xué)生聽②教師讓學(xué)生自己做③教師引導(dǎo)學(xué)生畫圖發(fā)現(xiàn)規(guī)律④教師讓學(xué)生對折紙,觀察發(fā)現(xiàn)規(guī)律,然后畫圖為調(diào)查教學(xué)效果,八年級教師將上述教學(xué)方法作為調(diào)研內(nèi)容發(fā)到全年級8個班420名同學(xué)手中,要求每位同學(xué)選出自己最喜歡的一種.他隨機抽取了60名學(xué)生的調(diào)查問卷,統(tǒng)計如圖(1)請將條形統(tǒng)計圖補充完整;(2)計算扇形統(tǒng)計圖中方法③的圓心角的度數(shù)是;(3)八年級同學(xué)中最喜歡的教學(xué)方法是哪一種?選擇這種教學(xué)方法的約有多少人?21.(10分)如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,求AE的長.22.(10分)某車間的甲、乙兩名工人分別同時生產(chǎn)只同一型號的零件,他們生產(chǎn)的零件(只)與生產(chǎn)時間(分)的函數(shù)關(guān)系的圖象如圖所示.根據(jù)圖象提供的信息解答下列問題:(1)甲每分鐘生產(chǎn)零件_______只;乙在提高生產(chǎn)速度之前已生產(chǎn)了零件_______只;(2)若乙提高速度后,乙的生產(chǎn)速度是甲的倍,請分別求出甲、乙兩人生產(chǎn)全過程中,生產(chǎn)的零件(只)與生產(chǎn)時間(分)的函數(shù)關(guān)系式;(3)當(dāng)兩人生產(chǎn)零件的只數(shù)相等時,求生產(chǎn)的時間;并求出此時甲工人還有多少只零件沒有生產(chǎn).23.(12分)如圖,點E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF與DE交于點G,求證:GE=GF.24.(14分)如圖,BD是矩形ABCD的一條對角線.(1)作BD的垂直平分線EF,分別交AD、BC于點E、F,垂足為點O.(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);(2)求證:DE=BF.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】將4670000用科學(xué)記數(shù)法表示為4.67×106,故選B.【點睛】本題考查了科學(xué)記數(shù)法—表示較大的數(shù),解題的關(guān)鍵是掌握科學(xué)記數(shù)法的概念進行解答.2、D【解析】試題解析:A.∵3+2=5,∴2,3,5不能組成三角形,故A錯誤;B.∵4+2<7,∴7,4,2不能組成三角形,故B錯誤;C.∵4+3<8,∴3,4,8不能組成三角形,故C錯誤;D.∵3+3>4,∴3,3,4能組成三角形,故D正確;故選D.3、A【解析】試題分析:根據(jù)幾何體的主視圖可判斷C不合題意;根據(jù)左視圖可得B、D不合題意,因此選項A正確,故選A.考點:幾何體的三視圖4、D【解析】
延長BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據(jù)銳角三角函數(shù)的定義得BC=R.【詳解】解:延長BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【點睛】此題綜合運用了圓周角定理、直角三角形30°角的性質(zhì)、勾股定理,注意:作直徑構(gòu)造直角三角形是解決本題的關(guān)鍵.5、C【解析】
利用扇形的弧長公式可得扇形的弧長;讓扇形的弧長除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高.【詳解】L==4π(cm);圓錐的底面半徑為4π÷2π=2(cm),∴這個圓錐形筒的高為(cm).故選C.【點睛】此題考查了圓錐的計算,用到的知識點為:圓錐側(cè)面展開圖的弧長=;圓錐的底面周長等于側(cè)面展開圖的弧長;圓錐的底面半徑,母線長,高組成以母線長為斜邊的直角三角形.6、B【解析】
設(shè)男生為x人,則女生有65%x人,根據(jù)今年共畢業(yè)生297人列方程求解即可.【詳解】設(shè)男生為x人,則女生有65%x人,由題意得,x+65%x=297,解之得x=180,297-180=117人.故選B.【點睛】本題考查了一元一次方程的應(yīng)用,根據(jù)題意找出等量關(guān)系列出方程是解答本題的關(guān)鍵.7、D【解析】
設(shè)點A的坐標是(x,y),根據(jù)旋轉(zhuǎn)變換的對應(yīng)點關(guān)于旋轉(zhuǎn)中心對稱,再根據(jù)中點公式列式求解即可.【詳解】根據(jù)題意,點A、A′關(guān)于點C對稱,
設(shè)點A的坐標是(x,y),
則
=0,
=-1,
解得x=-a,y=-b-2,
∴點A的坐標是(-a,-b-2).
故選D.【點睛】本題考查了利用旋轉(zhuǎn)進行坐標與圖形的變化,根據(jù)旋轉(zhuǎn)的性質(zhì)得出點A、A′關(guān)于點C成中心對稱是解題的關(guān)鍵8、B【解析】試題分析:由平移規(guī)律可得將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是(1,5),故選B.考點:點的平移.9、D【解析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.10、A【解析】分析:根據(jù)中心對稱的定義,結(jié)合所給圖形即可作出判斷.詳解:A、是中心對稱圖形,故本選項正確;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤;故選:A.點睛:本題考查了中心對稱圖形的特點,屬于基礎(chǔ)題,判斷中心對稱圖形的關(guān)鍵是旋轉(zhuǎn)180°后能夠重合.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
根據(jù)每人出8錢,則剩余3錢;如果每人出7錢,則差4錢,可以列出相應(yīng)的方程,本題得以解決【詳解】解:由題意可設(shè)有人,列出方程:故答案為【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程.12、(1)互相垂直;;(2)結(jié)論仍然成立,證明見解析;(3)135°.【解析】
(1)結(jié)合已知角度以及利用銳角三角函數(shù)關(guān)系求出AB的長,進而得出答案;
(2)利用已知得出△BEC∽△AFC,進而得出∠1=∠2,即可得出答案;
(3)過點D作DH⊥BC于H,則DB=4-(6-2)=2-2,進而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進而得出答案.【詳解】解:(1)如圖1,線段BE與AF的位置關(guān)系是互相垂直;
∵∠ACB=90°,BC=2,∠A=30°,
∴AC=2,
∵點E,F(xiàn)分別是線段BC,AC的中點,
∴=;(2))如圖2,∵點E,F(xiàn)分別是線段BC,AC的中點,
∴EC=BC,F(xiàn)C=AC,
∴,
∵∠BCE=∠ACF=α,
∴△BEC∽△AFC,
∴,
∴∠1=∠2,
延長BE交AC于點O,交AF于點M
∵∠BOC=∠AOM,∠1=∠2
∴∠BCO=∠AMO=90°
∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過點D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.13、x≥1【解析】分析:分別求出兩個不等式的解,從而得出不等式組的解集.詳解:解不等式①可得:x≥1,解不等式②可得:x>-3,∴不等式組的解為x≥1.點睛:本題主要考查的是不等式組的解集,屬于基礎(chǔ)題型.理解不等式的性質(zhì)是解決這個問題的關(guān)鍵.14、16或1【解析】
題目給出等腰三角形有兩條邊長為5和6,而沒有明確腰、底分別是多少,所以要進行討論,還要應(yīng)用三角形的三邊關(guān)系驗證能否組成三角形.【詳解】(1)當(dāng)三角形的三邊是5,5,6時,則周長是16;(2)當(dāng)三角形的三邊是5,6,6時,則三角形的周長是1;故它的周長是16或1.
故答案為:16或1.【點睛】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應(yīng)驗證各種情況是否能構(gòu)成三角形進行解答,這點非常重要,也是解題的關(guān)鍵.15、【解析】如圖,有5種不同取法;故概率為.16、(2,0)【解析】【分析】作輔助線,構(gòu)建三角形全等,先根據(jù)同弧所對的圓心角是圓周角的二倍得:∠APB=90°,再證明△BPE≌△PAF,根據(jù)PE=AF=3,列式可得結(jié)論.【詳解】連接PB、PA,過B作BE⊥x軸于E,過A作AF⊥x軸于F,∵A(m,﹣3)和點B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,設(shè)P(a,0),∴a+1=3,a=2,∴P(2,0),故答案為(2,0).【點睛】本題考查了圓周角定理和坐標與圖形性質(zhì),三角形全等的性質(zhì)和判定,作輔助線構(gòu)建三角形全等是關(guān)鍵.17、【解析】
根據(jù)數(shù)據(jù)x1,x2,…,xn的平均數(shù)為=(x1+x2+…+xn),即可求出數(shù)據(jù)x1+1,x2+1,…,xn+1的平均數(shù).【詳解】數(shù)據(jù)x1+1,x2+1,…,xn+1的平均數(shù)=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.故答案為+1.【點睛】本題考查了平均數(shù)的概念,平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).平均數(shù)是表示一組數(shù)據(jù)集中趨勢的量數(shù),它是反映數(shù)據(jù)集中趨勢的一項指標.三、解答題(共7小題,滿分69分)18、景點A與B之間的距離大約為280米【解析】
由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的長,可以先求出AC和BC的長.【詳解】解:如圖,作PC⊥AB于C,則∠ACP=∠BCP=90°,由題意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP?cosA=200×0.80=160,PC=AP?sinA=200×0.60=1.在Rt△BPC中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景點A與B之間的距離大約為280米.【點睛】本題考查了解直角三角形的應(yīng)用-方向角問題,對于解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.19、【解析】
根據(jù)絕對值的性質(zhì)、零指數(shù)冪的性質(zhì)、特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪的性質(zhì)、二次根式的性質(zhì)及乘方的定義分別計算后,再合并即可【詳解】原式.【點睛】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.20、解:(1)見解析;(2)108°;(3)最喜歡方法④,約有189人.【解析】
(1)由題意可知:喜歡方法②的學(xué)生有60-6-18-27=9(人);(2)求方法③的圓心角應(yīng)先求所占比值,再乘以360°;(3)根據(jù)條形的高低可判斷喜歡方法④的學(xué)生最多,人數(shù)應(yīng)該等于總?cè)藬?shù)乘以喜歡方法④所占的比例;【詳解】(1)方法②人數(shù)為60?6?18?27=9(人);補條形圖如圖:(2)方法③的圓心角為故答案為108°(3)由圖可以看出喜歡方法④的學(xué)生最多,人數(shù)為(人);【點睛】考查扇形統(tǒng)計圖,條形統(tǒng)計圖,用樣本估計總體,比較基礎(chǔ),難度不大,是中考常考題型.21、(1);(2)詳見解析;(3)AE=.【解析】
(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對應(yīng)邊成比例,證得OG?OB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論;(3)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問題,求得AE的長.【詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過點O作OH⊥BC,∵BC=1,∴設(shè)AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當(dāng)時,S△BEF+S△COF最大;即在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,【點睛】本題屬于四邊形的綜合題,主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理以及二次函數(shù)的最值問題.注意掌握轉(zhuǎn)化思想的應(yīng)用是解此題的關(guān)鍵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程給排水分包合同
- 有關(guān)工業(yè)品買賣合同集錦10篇-買賣合同8篇
- 事業(yè)單位編外工作人員的合同
- 企業(yè)市場營銷策略與技術(shù)文檔
- 倉庫合同租賃協(xié)議
- 弱電智能化勞務(wù)分包合同
- 建筑安裝工程建筑承包協(xié)議書
- 喂食車租賃合同8篇
- 2025年毫州貨運從業(yè)資格證模擬考試題庫
- 聯(lián)合經(jīng)營企業(yè)合同8篇
- 規(guī)模化豬場生物安全
- 2025年春節(jié)后復(fù)產(chǎn)復(fù)工方案及安全技術(shù)措施
- 維修基金使用合同范例
- 互聯(lián)網(wǎng)接入服務(wù)提供商服務(wù)承諾
- 2024年全國中學(xué)生生物學(xué)聯(lián)賽試題含答案
- 預(yù)防性侵安全教育主題課件
- 加油站防雷、防靜電自查自糾方案
- 三級醫(yī)院人力資源配置【醫(yī)院人力資源配置方案】
- 《寧夏閩寧鎮(zhèn):昔日干沙灘今日金沙灘》教案- 2023-2024學(xué)年高教版(2023)中職語文職業(yè)模塊
- 《中國肌內(nèi)效貼技術(shù)臨床應(yīng)用專家共識》學(xué)習(xí)分享
- 片上互連優(yōu)化與總線接口設(shè)計
評論
0/150
提交評論