版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
100%RENEWABLEENERGYSCENARIOS
SUPPORTINGAMBITIOUSPOLICY
TARGETS
?IRENA2024
Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.
ISBN:978-92-9260-586-5
Citation:IRENACoalitionforAction(2024),100%renewableenergyscenarios:Supportingambitiouspolicytargets,InternationalRenewableEnergyAgency,AbuDhabi.
AbouttheCoalition
TheIRENACoalitionforActionbringstogetherleadingrenewableenergyplayersfromaroundtheworldwiththecommongoalofadvancingtheuptakeofrenewableenergy.TheCoalitionfacilitatesglobaldialoguesbetweenpublicandprivatesectorstodevelopactionstoincreasetheshareofrenewablesintheglobalenergymixandacceleratetheenergytransition.
Aboutthispublication
Thisbriefexaminesfivecommonlyreferencedenergyscenarios:threefocusedonachieving100%renewablesandtwostrivingfornet-zeroemissions.Itevaluatesandcontraststhesimilaritiesanddifferencesamongthesescenarios,providingpolicyrecommendationsderivedfromtheanalysistosupportambitiouspolicyobjectivesandachieveafullyrenewableenergy-poweredsystembymid-century.
Acknowledgements
ThisreportwascoauthoredbytheCoalitionforActionTowards100%RenewableEnergyWorkingGroup,undertheChairmanshipoftheVice-PresidentoftheEuropeanRenewableEnergiesFederation(EREF),RainerHinrichs-Rahlwes,andtheformerPresidentoftheInternationalSolarEnergySociety(ISES),DaveRenné.
ValuablecontributionswereprovidedbyCoalitionMembers:AnnaStrobl(néeSkowronformerWorldFutureCouncil),LottaPirttimaa(OceanEnergyEurope),StevenVanholme(EKOenergy),AndrzejCeglarz(RenewablesGridInitiative),LenaDente(WorldFuturesCouncil),NamizMusafer(IDEAKandy),JulieDucasse(CAN),Hans-JosefFellandThureTraber(bothEnergyWatchGroup),RehsmiLadwa(GWEC),BenjaminLehner(DMEC),KarimMegherbi(DiiDesertEnergy),MartaMartinez(Iberdrola),BharadwajKummamuru(WorldBioenergyAssociation),GavinAllwright(IWSA),RoquePedace(INFORSE),LeaHayez(RGI),MonicaOliphant(ISES)[nowrepresentingWWEA];andIRENAcolleaguesIlinaRadoslavovaStefanova,JarredMcCarthy,GiedreViskantaite,AsamiMiketa,BilalHussain,JuanPabloJimenezNavarro,JuanJoseGarciaMendez,MichaelTaylor,andAnindyaBhagirath(formerIRENA)underthesupervisionofRabiaFerroukhi(formerDirector,IRENAKnowledge,PolicyandFinanceCentre)andUteCollier(ActingDirector,IRENAKnowledge,PolicyandFinanceCentre).
DesignwasprovidedbyMyrtoPetrou.
TheIRENACoalitionforActionwouldalsoliketoexpressitsgratitudetoalltheTowards100%RenewableEnergyWorkingGroupMemberswhoparticipatedintheeventsanddiscussionsthatinformedthisBrief.
Disclaimer
Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAandtheIRENACoalitionforActiontoverifythereliabilityofthematerialinthispublication.However,neitherIRENA,theIRENACoalitionforAction,noranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.
TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENAorMembersoftheIRENACoalitionfor
Action.Mentionsofspecificcompanies,projectsorproductsdonotimplyanyendorsementorrecommendation.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAortheIRENACoalitionforActionconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.
Coverphotos:FromlefttorightNewAfrica/S,buffaloboy/S,BELLKAPANG/S,DragonImage/Ss.
100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS3
CONTENTS
1.INTRODUCTION 4
2.BACKGROUND 5
3.OVERVIEWOFSCENARIOSANALYSED 6
4.KEYFINDINGS 10
4.1.ELECTRIFICATION 11
4.2.SOLARANDWIND 12
4.3.BIOMASS 12
4.4.OTHERRENEWABLESOURCES 12
4.5.GREENHYDROGEN 13
4.6.TRANSPORT 13
4.7.HEATINGANDCOOLING 14
4.8.SOCIO-ECONOMICASPECTSOFTHESCENARIOS 14
5.SUMMARYANDRECOMMENDATIONSFORPOLICYMAKERS 16
REFERENCES
19
4100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS
01INTRODUCTION
InpursuitofthegoalsoftheParisAgreement,net-zeroenergysystemscenariosincorporateabroadrangeofenergysources,primarilydrivenbyrenewablesbutalsoincludingresidualfossilandnuclearenergycombinedwithcarbonremovalstrategiestoprovidepathwaystolimitglobaltemperaturesto1.5°Cofpre-industriallevels.Net-zerosystemscenariosarefundamentallybasedon(i)graduallyphasingoutfossilfuelsandnuclearenergywhilemitigatingsectoralimpacts;and(ii)assumingthattheuseoffossilandnuclear,withcarbonremovalstrategies,wouldstillbeneededduetoperceivedtechnicalchallengestothedecarbonisationandelectrificationofhard-to-abatesectors.
However,withintheenergycommunitytherehasbeenagrowingdebateonthefeasibilityandcredibilityofafully100%renewableenergysystem(definedinBox1).100%renewableenergyscenarioproponentsarguethatthereisgrowingevidencethatsuchanenergysystem,completelydevoidoffossilandnuclearresources,isbothtechnologicallyfeasibleandoffersthelowestcost-andmostenvironmentallysustainable-optionforthedecarbonisationoftheglobalenergysystem.
Bycomparingthree100%renewableenergyscenariosandtwonet-zeroscenarios,thispolicybriefseekstogobeyondthefeasibilityandcredibilitydebateconcerningeachindividualscenario.Rather,thisbriefidentifiesthecommonchallengesandopportunitiesforarapidandholisticshifttowardsmoreambitiousrenewableenergytargets,andprovidesrelatedpolicyrecommendations.Itcallsfordecisionstobetakenandimplementedtodayandidentifiesrequirementstosupporta100%renewableenergysystembymid-century.
Box1TheIRENACoalitionforActionhasagreedthefollowingdefinitionfor100%
renewableenergy:
Renewableenergyencompassesallrenewablesources,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy.Onehundredpercentrenewableenergymeansthatallsourcesofenergytomeetallend-useenergyneedsinacertainlocation,regionorcountryarederivedfromrenewableenergyresources24hoursperday,everydayoftheyear.Renewableenergycaneitherbeproducedlocallytomeetalllocalend-useenergyneeds(power,heatingandcooling,andtransport)orcanbeimportedfromoutsidetheregionusingsupportivetechnologiesandinstallationssuchaselectricalgrids,hydrogenorheatedwater.Anystoragefacilitiestohelpbalancetheenergysupplymustalsouseenergyderivedonlyfromrenewablesources.
100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS5
BACKGROUND02
BasedonthefindingsoftheIntergovernmentalPanelonClimateChange’s(IPCC)1.5°Creportof2018,andtherecent6thAssessmentReport,orAR6(2023),mitigatingclimatechangetonomorethan1.5°Cabovepre-industriallevelsbytheendofthiscenturywillrequirethecompleteeliminationofallanthropogenicgreenhousegasemissionsby2050,orevenearlier(IPCC,2019,2023).TheAR6reportfurthercallsfor“rapidanddeep,andinmostcases,immediategreenhousegasemissionsreductionsinallsectorsinthisdecade”tolimitglobalwarmingto1.5°C.Giventhatthemajorityofanthropogenicemissionsareduetoenergy-relatedactivities,harnessingrenewableenergytechnologies(solar,wind,hydro,geothermal,bioenergy,ocean,etc.),alongwithsignificantlyincreasedenergyefficiencymeasures,willbekeytotheseemissionreductions(IPCC,2023).Thesemeasureswillalsoprovideadditionalsocietalbenefitssuchasimprovedlocalairqualityand-withadequatepoliciesinplace-willexpandenergyaccessandequity,andstrengthenlocaleconomies.
Evidencefromsomepartsoftheworldsuggeststhattheenergysystemisalreadytransformingintoazero-carbon,distributedsystembasedonadiversemixofrenewableenergysourcesandtechnologies.Forexample,CostaRica,IcelandandUruguayderivemorethan50%oftheirtotalenergysupplyfromrenewables-althoughnotnecessarilyvariablerenewablessuchaswindandsolar(IRENA,2023a,2023b,2023c).In2021,CostaRicademonstratedthata100%renewableelectricitysystemisviablebymeetingmostofitspowerneedswithamixofhydro,windandgeothermal,withrenewablesofferingthelowest-costsolutiontonewandupgradedpowerproduction.Inaddition,significantgainsarebeingmadeinglobalcleanenergyaccessthroughrooftopsolarsystemsandotherdistributedformsofsolarelectricity,increasingelectricvehicleuse,andsectorcouplingofrenewablepowertogreenhydrogenapplications.However,achievinga100%renewableenergysystemrequiressystemicchangesinenergymarketdesignandinfrastructuredevelopment.Long-termdecisionsmustbeimplementedtoday,regardlessofcurrentmarkettrends.Additionally,decisionsareneededtodaytocreateanenablingenvironmentinwhichthe
requiredinfrastructureandcapacityarereadilyavailableaswetransitiontowardsa100%renewable
energyfuture.
●
Acrucialapproachinguidinghowa100%renewableenergysystemcanbeachievedistoexaminevariousenergytransformationscenarios.Overtheyears,avarietyofenergymodelshavebeendevelopedandappliedtoanalysedifferenttransformationpathwaysandcalculatetheimpactsofdifferentpolicyandtechnologyoptions,oftenwiththepurposeofidentifyingtheleast-costapproachforachievinganenergytransformationgoalortarget.Whereasclimatemodelsanalysetheconsequencesofdifferentemissionpathwaysofbothenergy-andnon-energy-relatedgreenhousegas(GHG)emissionsontheglobalclimate,energyscenariosusevariousenergy-relatedmodelsandassumptions,suchascostordeploymentoptimisationtechniquestoidentifyvariouspathwaysforachievingtheendgoal.
6100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS
OVERVIEWOF
03SCENARIOS
ANALYSED
Modellingscenariosthattarget100%renewableenergyhavegainedprominenceinthepastdecade,asdescribedinalandmarkpublicationbyKhaliliandBreyer(2022).Intheirpublication,many100%renewableenergyscenariostudiesconductedatnational,regionalandgloballevelswereevaluatedandshowntohaveincreasingreliabilityandcredibilityasmethodsanddataimprove.
Threeenergytransformationscenariosdedicatedtoachieving100%renewableenergyby2050areconsideredhere:TheLappeenranta-LahtiUniversityofTechnology(LUT)Global100%REScenario(Bogdanovetal.,2021);TheUniversityofTechnologySydney(UTS)1.5°CScenarioincludedintheir“AchievingtheParisClimateGoals”Report(Teske,2019);andStanfordUniversity’s100%Wind-Water-Solar(WWS)Scenariothatspecificallycovers145countries(Jacobsonetal.,2022).Thesescenarioswerechosenbecausetheyadheretotheprinciplesof100%renewableenergy,areglobalinscopeandextendtheiranalysisto2050.
Inaddition,twoscenariosthataimfornetzeroby2050byreducinggreenhousegas(GHG)emissionsinordertolimitglobalwarmingto1.5°Carealsoconsidered:theInternationalRenewableEnergyAgency(IRENA)1.5°CScenario(IRENA,2021)andtheInternationalEnergyAgency(IEA)Net-ZeroEmissions(NZE)Scenario(IEA,2021).Thesetwoscenariosincludenuclearandfossil-fuelpoweredgenerationaswellascarbonremovalstrategiesaspartofafutureenergymix.Theyalsoincludecarboncaptureandutilisation(CCU),andcarboncaptureandstorage(CCS)technologiesforremovingresidualemissions,aswellasacombinationofthetwo:carboncapture,utilisationandstorage(CCUS).CCUSisexpandedinthescenariostoincludebioenergywithcarboncapture,andstorage(BECCS,incorporatedbyIRENAandIEA),anddirectaircapturewithcarboncaptureandstorage(DACCS,incorporatedbyIEA).Inaddition,CCUcanbepartofa100%renewableenergyScenariowithanon-fossilCO2source,whichisexpandedonintheLUTGlobal100%REScenario,thedistinctionbeingthatCCScannotbepartofa100%renewableenergyscenario(Bogdanovetal.,2021).
Allfivescenariossharethesamemodellinghorizonto2050withintermediatemilestones(e.g.,2030)andtheyallinvolvearapidandlarge-scaledeploymentofrenewableenergysolutions,especiallysolarandwindtechnologies.
100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS7
Theauthorsofthispolicybriefrecognisethatmanyofthesestudieshavebeenupdatedsincetheiroriginalpublication.Nevertheless,thekeyfindingsfromeachscenarioremainlargelyunchangedintheupdatedstudies.Furthermore,toreiterate,themainobjectiveofthispolicybriefistoidentifyoverarchingpolicyrecommendationsthatcanbederivedfromundertakingnetzeroand100%renewableenergyscenarioanalyses.Accordingtothescenarios’authors,100%renewableenergy-orveryhighsharesofrenewables-iswhatpolicyanddecision-makersshouldstrivefor.The100%renewableenergystudiesfoundthistobe,forthemostpart,thelowercostoptionforastableandreliableenergysupplyinlinewiththeobjectiveoflimitingglobalwarmingto1.5°C,whichwillbefurtherelaboratedinSection5.
Moreover,theauthorsofthispolicybriefacknowledgetherearesomelimitationstosuchanalyses.Forexample,recenteventsunforeseenbytheauthors,includingCOVID-19andtherelatedenergycrisis,arenotreflectedintheseScenarios.Moreover,thedirectcomparisonofsomeinputassumptionsandoutputsisdifficultsincethemodelsusedifferentsetsofindicators.Tothisend,Table1providesagenericoverview,representingcommonalitiesacrossallscenariosorganisedintermsoftargets,inputs,methodologiesusedandkeyoutcomes.Figure1detailstheenvisionedtotalenergymixesforeachscenarioby2050.Whiletheauthorsof100%renewableenergyscenariosmightuseslightlydifferentterminology,forconsistencythedefinitionsforthetermsusedforthispolicybriefarespecifiedinBox2.
Box2Definitions
Finalenergyconsumption(FEC)referstoallfuelandenergydeliveredtousersfortheirenergyuse.FECincludessecondaryenergy,i.e.afterconversionprocessesandrelatedlosses,andtheforminwhichenergyismadeavailableforfinalconsumption(e.g.electricity,heat,biofuels,gasolineanddiesel;butalsocoal,naturalgasandbiomassiftheyareusedforheatingorotherdirectuses).FECdoesnotincludenon-energyusesoffossilandbiomassresourcessuchasthefeedstocktothechemicalindustryforplasticsandbioplasticsproduction,whichwouldbeconsideredtotalfinalenergyconsumption(TFEC).
Totalenergysupply(TES)consistsofprimaryenergyproductionandprimaryandsecondaryenergyimportssubtractingenergyexports,internationalbunkersandstockchanges.
Totalprimaryenergydemand(TPED)referstoprimaryenergy,i.e.,theformofenergythatfirstappearsintheenergybalance,beforeconversionprocessesandrelatedlosses(e.g.,crudeoil,coal,naturalgas,biomass).
Source:UNInternationalrecommendationsforenergystatistics(IRES,2018),(IRENA,2013).
8100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS
Table1
Overviewofscenariosanalysed
ENERGY
SYSTEM
MODEL
GLOBAL
100%RE
1.5°CSCENARIO
100%WIND-
WATER-SOLAR
(WWS)
1.5°CSCENARIO
NET-ZERO
EMISSIONS(NZE)
Institution
LUT(2021)
UTS(2019)
Stanford(2022)
IRENA(2021)
IEA(2021)
Target(s)
100%renewableenergysystemby2050
Achieving1.5?Cby2050withprimaryenergy
supplybasedon100%renewableenergy
80%WWSby2030;
100%WWSby2050for145countries
Energytransition
pathwayaligned
withthe1.5°Ctarget
(netzeroby2050)
Netzeroby2050
Renewable
energyshareintotalenergysupply(TES)by2050
100%
100%(<92%,including
non-energyconsumption,whichwillstillinclude
fossilfuels.Primary
energysupplyin2050willbebasedon100%renewableenergy)
100%
74%intotalenergy
supply(90%inelectricitygeneration)
67%intotalenergy
supply(88%inelectricitygeneration)
Energy
sources
includedin
2050
Solarphotovoltaic(PV),concentratedsolarpower(CSP),wind,hydropower,geothermaland
bioenergy
TPED:solar,wind,hydro,geothermal,biomass,
oceanenergy(tidalandwave),naturalgas,oil,coal(latterduetonon-energyconsumption)
Generation:wind,solarPV,CSP,geothermal,hydro
andoceanenergy.
Heat:solarthermal,
geothermalheat
TES:solar,wind,biogas,biomass,hydropower,
geothermal,solar,oceanenergy,naturalgas,oil,coalandnuclear
TES:solar,bioenergy,
wind,hydropower,
geothermal,other
renewables,nuclear,
naturalgas,oilandcoal.
2050share
ofelectricity(electrificationlevel)
89%(totalprimaryenergydemand)
92.3%(totalfinalenergydemand)
Efficiencymeasuresresultintotalenergydemand
decreasingby56.4%,sothatremainingenergyisnearlyall(~99.1%)
electricity:85%higherthan2018actuallevels(totalinstalledcapacity)
51%ofdirectelectricityintotalfinalenergy
consumptionand14%fromhydrogen
49%ofelectricityintotalfinalenergyconsumption
Cumulative
investment
neededto
2050
USD72trillion,
notingnetenergeticyieldperinvested
unitofcapitalin
renewableelectricitysolutionsfarexceedstheoneinupstreamfossilfuels
USD51trillionacrossthepowersector(anaverageinvestmentofUSD1420billionperyear,2015-
2050)
USD12.4trillionfor
theheatingsector(an
averageinvestmentof
USD344billionperyear,2015-2050)
AroundUSD61.5trillion
Upfrontcostsare
recoveredthroughenergysales,coveringWWS
electricity;heatandgreenhydrogengeneration;
storageforelectricity,
heating,coolingand
greenhydrogen;districtheatingheatpumps;all-distancetransmission;anddistribution
USD131trillion
(annualfunding
requirementaveraging
USD4.4trillion),adaptedfromplannedgovernmentcumulativeenergy
andenergyrelated
infrastructureinvestmentstrategiesamountingtoUSD98trillionby2050
Annualaveragecapitalinvestedisindicatedfor2030-2040-2050:
-40-50trillionUSD,
annualinvestmentsof4-5trillionperyearby2030
-AlmostUSD5trillionannuallyby2040
-USD4.5trillionannuallyby2050
Jobcreation
134millionby2050intheglobalenergysector*
47.8millionenergy-sectorjobsby2050
(upto89%wouldbe
renewableenergyjobsby2030)
28.4million(netincrease)by2050
122millionjobsintheglobalenergysector:
-43milliondirectlyinrenewableenergy
-25millioninpowergridsandflexibility
-25millioninenergyefficiency
-2.24millioninhydrogen
30millionmorepeopleunderNZEworkingincleanenergy,efficiencyandlow-emissions
technologies.
*(Ram,etal.,2022).
1.5°CSCENARIO(UTS)
8%
16%
19%
19%
33%
4%
1%
WWS(STANFORD)
1%
3%
5%
45%
46%
Solar
SolarPV
SolarCSP
Hydropower
Oceanenergy
Bioenergy
Geothermal
Windenergy
Naturalgas
Nuclear
Oil
Fossil
Coal
Otherrenewables
Othernon-renewables
100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS9
Figure1
ComparedenergyScenariosandtheirtotalenergysupplyin2050
GLOBAL100%RE(LUT)
2%
3%
18%
69%
6%
2%
6%
2%
9%
4%
1.5°CIRENA
25%
16%
13%
17%
6%
1%
1%
NZE(IEA)
11%
8%
6%
20%
16%
19%
11%
6%
3%
10100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS
04KEYFINDINGS
AllscenarioscoveredinSection3areinlinewitha1.5°Ctargetbymid-century.ThisisthepreferredtargetsetbytheParisClimateAccordof2015(UN,2015).Detailsofwhattheseemissionreductionpathwayscouldlooklikeovertimewerepublishedinthe2018IPCCSpecialReport,GlobalWarmingof1.5°C(IPCC,2019).Allthescenariosexaminedcallfor:
1.energyrelatedGHGemissionstofalltozero(orNetZero)by2050,ifnotearlier;
2.arapidreductionofemissionstoabouthalfofthecurrentlevelsbytheyear2030,consistentwiththeIPCCAR6report(IPCC,2023);and
3.energyefficiencymeasurestobesignificantlyincreased,sothatpercapitaenergyintensityandtotalfinalenergyconsumption(TFEC)arelowerby2050thancurrently,evenastheglobalpopulationgrows.
Variousstepstoachievetheseend-useenergyreductionsaresuggested,suchasgreatlyimprovedefficienciesinbuildingdesignandretrofits,expandeduseofheatpumptechnologies,anddemand-sidemanagementstrategies.
TheIEA’sNZEandIRENA’s1.5°CScenarioincludecarbonremovalstrategies,thus,allowingforcontinuedinfrastructurefor,andexploitationof,fossilresourcestoalimitedextent.The100%renewableenergyscenariosdifferinthemilestonesandexacttechnologyandresourcesmix,buttheydonotallowforotherthanrenewableenergysourcesby2050orsoonafter.Additionally,thethree100%renewableenergyscenariosstartfromtheassumptionthatfromacertainyearonwardsonlyrenewablesourcesshouldbeused.Insum,the100%renewableenergyscenariosrequirehighersystemflexibilityonthedemandandsupplysideandthereforevariousstorageandflexibilityoptions.
Thissectionfocusesonthekeyfindingsfromthe100%renewableenergyscenarios;similaritiesandrelevantdifferencescomparedwiththenet-zerostudieswillalsobehighlighted(furtherdetailingthedifferencesprovidedinTable1andFigure1).Thesucceedingsectionwillprovideasummarywithrecommendationsforpolicymakers.
100%RENEWABLEENERGYSCENARIOS:SUPPORTINGAMBITIOUSPOLICYTARGETS11
4.1.Electrification
PerhapsthemostimportantcommonfindingamongallscenariosisthatelectricityinTFECwillgrowsubstantiallyoverthenext30years,inpartduetotheelectrificationoftheindustrial,transportandbuildingsectorsaswellasduetoageneralincreaseinelectricgoodsworldwideandanoverallincreaseinsectorcouplingapplications.Dependingonthescenario,electrificationwillprovideanywherefrom50%tomorethan90%ofTFECby2050,comparedtoaround20%in2022(IEA,n.d.).Consequently,thereisaneedtobuildasignificantamountofnewelectricitycapacityandenablinginfrastructuretocovertheneedsofthesesectors.
TheLUTGlobal100%REScenario(Bogdanovetal.,2021);UTS1.5°CScenarioincludedintheirAchievingtheParisClimateGoalsreport(Teske,2019);andStanfordUniversity’s100%WWSScenario(Jacobsonetal.,2022)specifythattheelectrificationofallenergysectorscanbeachievedwithouttheneedforanyfossil-fuel-poweredgenerators.Theelectrificationoftransportandheatingareconsistentacrossallthreescenarios,withafocusonelectrifyingthetransportsectorbyreplacinginternalcombustionengine(ICE)vehicleswithelectricvehicles(EVs).TheIRENA1.5°CScenariostatesthat49%ofthetransportsectorwillbeelectrifiedby2050.
Withelectricityinherentlybeingthemain‘energycarrier’ofthefutureinallscenarios,aresultingsubstantialincreaseinelectricitydemandby2050isexpected.TheGlobal100%REScenariosuggeststhat90%ofTPEDwillbemetbyelectricityin2050(Bogdanovetal.,2021).Thisscenarioanticipatesthatelectricitydemandwillincreasesubstantiallyby2050withthegreatestincreasecomingfromend-usesectorsintransportandindustry.Inthisregard,theGlobal100%REScenarioisconsistentwithIEA’sNZEandIRENA’s1.5°CScenario.Incomparison,theWWSScenario(Jacobsonetal.,2022)assumesanear-totalelectrificationofTFEC,withonlyasmallportionachievedthroughsolarthermalandgeothermalheat.
Intermsofenergyefficiency,theWWSScenarioassumesthatefficiencymeasuresaswellasareductionintraditionalfossil-relatedindustrydemandswillreducetheoveralldemandforenergyby56.4%by2050(Jacobsonetal.,2022).TheUTS1.5°CScenarioalsoassumesmorethan50%reductioninfinalenergydemandworldwideduetoefficiencyandconservationmeasures(Teske,2019).TheGlobal100%REScenarioanticipatesa49%efficiencyimprovementintheratioofTFECtoTPEDfrom2015to2050(Bogdanovetal.,2021).Allscenarios,particularlythe100%renewableenergyscenarios,assumethatthetotalenergydemandwilldecreaseowingtoenergyefficiencyimprovementsby2050.
Theoverallrapidexpansionoftheelectricitysectorandthegrowthofvariablerenewableenergy(VRE)
sourceswilldemandatransformationofthetransmissionanddistributioncapabilitiesofthegrid.This
willrequirelargeinvestmentstoexpandandenhancethegridleadingtosmartandhighlydigitalized
grids;e.g.,upgradesincontrolandmonitoringofgrids.Additionalstoragecapacitiesandvariousstorage
technologieswillalsoberequired.TheUTS1.5°CScenario,forexample,underscoresthatashort-term
largequantityofover244GWofhydro-pumpedstorageand12GWofbatterystorageby2030mustbe
installedtosupportthemajorexpansionofsolarPV(Teske,2019).
Finally,sectorcouplingisanimportantrequirementtomatchVREandflexibledemand,particularlyviahydrogenproduction,electricvehiclesandspaceheatingdemand.Powerquality,reliabilityandsecurityrequirementdemandsbyconsumersareincreasing.Yet,asmoredistributedandvariablesourcesarebeingtiedintothegridthesefactorscanpotentiallybenegativelyimpacted.Gridflexibility,achievedthroughstoragetechnologiescoveringtimescalesfromhourlytodailytoseasonally,demand-sidemanagementoftheload,andregionalpower
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Pyridyl-disulfide-Dexamethasone-生命科學(xué)試劑-MCE-7118
- 2025年度生姜種植與鄉(xiāng)村旅游融合發(fā)展合作協(xié)議
- 二零二五年度解除勞動合同經(jīng)濟補償標(biāo)準(zhǔn)與法律依據(jù)合同
- 二零二五年度小微企業(yè)貸款服務(wù)合同
- 2025年度門頭制作施工與綠色建筑認(rèn)證服務(wù)合同
- 2025年度幼兒園品牌授權(quán)與技術(shù)轉(zhuǎn)讓合作協(xié)議
- 二零二五年度質(zhì)押式回購證券化合同模板
- 二零二五年度勞動合同終止證明及競業(yè)禁止合同
- 老年人長期護理保險中對于慢病包括慢腎病的分層次管理體系探索與實踐
- 中小企業(yè)勞動合同標(biāo)準(zhǔn)格式參考
- 自動扶梯安裝過程記錄
- MOOC 材料科學(xué)基礎(chǔ)-西安交通大學(xué) 中國大學(xué)慕課答案
- 中國城市居民的健康意識和生活方式調(diào)研分析報告
- 復(fù)產(chǎn)復(fù)工試題含答案
- 售后服務(wù)經(jīng)理的競聘演講
- 慢加急性肝衰竭護理查房課件
- 文件丟失應(yīng)急預(yù)案
- 全球職等系統(tǒng)GGS職位評估手冊
- 專項法律意見書(私募基金管理人重大事項變更)-詳細版
- 深圳市社會保險參保證明
- 2023年國家護理質(zhì)量數(shù)據(jù)平臺
評論
0/150
提交評論